Drosophila Crumbs (Crb) is a key regulator of epithelial polarity and fulfils a plethora of other functions, such as growth regulation, morphogenesis of photoreceptor cells and prevention of retinal degeneration. This raises the question how a single gene regulates such diverse functions, which in mammals are controlled by three different paralogs. Here, we show that in Drosophila different Crb protein isoforms are differentially expressed as a result of alternative splicing. All isoforms are transmembrane proteins that differ by just one EGF-like repeat in their extracellular portion. Unlike Crb_A, which is expressed in most embryonic epithelia from early stages onward, Crb_C is expressed later and only in a subset of embryonic epithelia. Flies specifically lacking Crb_C are homozygous viable and fertile. Strikingly, these flies undergo light-dependent photoreceptor degeneration despite the fact that the other isoforms are expressed and properly localised at the stalk membrane. This allele now provides an ideal possibility to further unravel the molecular mechanisms by which Drosophila crb protects photoreceptor cells from the detrimental consequences of light-induced cell stress.
Small-scale sequencing has improved substantially in recent decades, culminating in the development of next-generation sequencing (NGS) technologies. Modern NGS methods have helped the discovery of many new plant viruses. Nevertheless, there is still a need to establish solid assembly pipelines targeting small genomes characterised by low identities to known viral sequences. Here, we describe and discuss the fundamental steps required for discovering and sequencing new plant viral genomes by NGS. A practical pipeline and standard alternative tools used in NGS analysis are presented.
Quantitative Polymerase Chain Reaction (qPCR) is currently the most sensitive technique used for absolute and relative quantification of a target gene transcript, requiring the use of appropriated reference genes for data normalization. To accurately estimate the relative expression of target tomato (Solanum lycopersicum L.) genes responsive to several virus species in reverse transcription qPCR analysis, the identification of reliable reference genes is mandatory. In the present study, ten reference genes were analyzed across a set of eight samples: two tomato contrasting genotypes (‘Santa Clara’, susceptible, and its near-isogenic line ‘LAM 157’, resistant); subjected to two treatments (inoculation with Tomato chlorotic mottle virus (ToCMoV) and its mock-inoculated control) and in two distinct times after inoculation (early and late). Reference genes stability was estimated by three statistical programs (geNorm, NormFinder and BestKeeper). To validate the results over broader experimental conditions, a set of ten samples, corresponding to additional three tomato-virus pathosystems that included tospovirus, crinivirus and tymovirus + tobamovirus, was analyzed together with the tomato-ToCMoV pathosystem dataset, using the same algorithms. Taking into account the combined analyses of the ranking order outputs from the three algorithms, TIP41 and EF1 were identified as the most stable genes for tomato-ToCMoV pathosystem, and TIP41 and EXP for the four pathosystems together, and selected to be used as reference in the forthcoming expression qPCR analysis of target genes in experimental conditions involving the aforementioned tomato-virus pathosystems.
The complete nucleotide sequence of a tospovirus isolated from Lycopersicum esculentum in Thailand was determined. The L RNA comprises of 8912 nt and codes for the RNA-dependent RNA-polymerase (RdRp) (2877 aa). Two ORFs are located on the M RNA (4823 nt) encoding the non-structural (NSm) protein (308 aa) and the viral glycoprotein precursors (Gn/Gc) (1121 aa) separated by an intergenic region of 433 nt. ORFs coding for the non-structural (NSs) and nucleocapsid (N) protein, 439 aa and 275 aa, respectively, were identified on the S RNA (3477 nt) separated by an intergenic region of 1202 nt. The N protein of the Thailand isolate was most closely related to that of capsicum chlorosis virus (CaCV), sharing an amino acid sequence identity of 92.7%. Additionally, multiple sequence analyses revealed significant similarities to tospoviruses of the species Watermelon silver mottle virus and to several putative tospovirus entries in GenBank. Based on these alignments it is proposed to refer to all these different viruses as isolates of CaCV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.