Control of tuberculosis worldwide depends on our understanding of human immune mechanisms, which combat the infection. Acquired T cell responses are critical for host defense against microbial pathogens, yet the mechanisms by which they act in humans remain unclear. We report that T cells, by the release of interferon-γ (IFN-γ), induce autophagy, phagosomal maturation, the production of antimicrobial peptides such as cathelicidin, and antimicrobial activity against Mycobacterium tuberculosis in human macrophages via a vitamin D–dependent pathway. IFN-γ induced the antimicrobial pathway in human macrophages cultured in vitamin D–sufficient sera, but not in sera from African-Americans that have lower amounts of vitamin D and who are more susceptible to tuberculosis. In vitro supplementation of vitamin D–deficient serum with 25-hydroxyvitamin D3 restored IFN-γ–induced antimicrobial peptide expression, autophagy, phagosome-lysosome fusion, and antimicrobial activity. These results suggest a mechanism in which vitamin D is required for acquired immunity to overcome the ability of intracellular pathogens to evade macrophage-mediated antimicrobial responses. The present findings underscore the importance of adequate amounts of vitamin D in all human populations for sustaining both innate and acquired immunity against infection.
Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D–dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ–induced macrophage vitamin D–dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.
Induction of type I interferons by the bacterial secondary messengers cyclic-di-GMP (c-di-GMP) or cyclic-di-AMP (c-di-AMP) is dependent on a signaling axis involving the STING adaptor, TBK1 kinase and IRF3 transcription factor. Here we identified the helicase DEAD box polypeptide 41 (DDX41) as a pattern recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via shRNA in murine or human cells inhibited the induction of innate immune genes and resulted in defective STING, TBK1 and IRF3 activation in response to c-di-GMP or c-di-AMP. These results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by the DDX41 PRR, which complexes with STING to signal to TBK1-IRF3 and activate the interferon response.
SUMMARY Effective innate immunity against many microbial pathogens requires macrophage programs that upregulate phagocytosis and direct antimicrobial pathways, two functions generally assumed to be coordinately regulated. Here the regulation of these key functions was investigated in human blood-derived macrophages. IL-10 induced the phagocytic pathway, including CD209 and scavenger receptors, resulting in phagocytosis of mycobacteria and oxLDL. IL-15 induced the vitamin D-dependent antimicrobial pathway and CD209, yet the cells were less phagocytic. The differential regulation of macrophage functional programs was confirmed by analysis of the spectrum of leprosy lesions: the macrophage phagocytosis pathway was prominent in the clinically progressive, multibacillary form, whereas the vitamin D-dependent antimicrobial pathway predominated in the self-limited form of the disease and in patients undergoing reversal reactions from the multibacillary to the self-limited form. These data indicate that macrophage programs for phagocytosis and antimicrobial responses are distinct and differentially regulated in innate immunity in bacterial infections.
Leprosy provides a model to investigate mechanisms of immune regulation in humans, given that the disease forms a clinical-immunological spectrum. Here, we identified 13 miRNAs that were differentially expressed in the lesions of subjects with progressive lepromatous (L-lep) vs. the self-limited tuberculoid (T-lep) disease. Bioinformatic analysis revealed a significant enrichment of L-lep-specific miRNAs that preferentially target key immune genes downregulated in L-lep vs. T-lep lesions. The most differentially expressed miRNA in L-lep lesions, hsa-mir-21, was upregulated in M. leprae-infected monocytes. Hsa-mir-21, by downregulating toll-like receptor 2/1 (TLR2/1)-induced CYP27B1 and IL1B as well as upregulating IL-10, inhibited gene expression of the vitamin D-dependent antimicrobial peptides, CAMP and DEFB4A. Conversely, knockdown of hsa-mir-21 in M. leprae-infected monocytes enhanced expression of CAMP and DEFB4A and restored TLR2/1-mediated antimicrobial activity against M. leprae. Therefore, the ability of M. leprae to upregulate hsa-mir-21 targets multiple genes associated with the immunologically localized disease form, providing an effective mechanism to escape from the vitamin D-dependent antimicrobial pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.