GNE myopathy or hereditary inclusion body myopathy (HIBM) is an ultra-rare severely disabling autosomal recessive adult onset muscle disease which affects roughly one to three individuals per million worldwide. Genetically, HIBM is caused by mutations in the glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase gene (GNE), resulting in diminished enzyme function and reduced sialic acid biosynthesis. A founder variant GNE p.M712T was first described in patients of Iranian and Middle-Eastern descent living outside of Iran. Asymptomatic heterozygote or carrier frequency has been reported as high as 1 in 11 within the Persian-Jewish community residing in Los Angeles, CA. To investigate the prevalence of the p.M712T variant in Iran, we studied 792 samples collected from random individuals in Sangesar (Mahdishahr) in Northern Iran. DNA samples were obtained by buccal swab, and genotyping was performed by melting curve analysis. The results included 31 of 792 (3.91%) heterozygous carriers and 5 (0.31%) homozygotes for GNE p.M712T. All five homozygous individuals, age 30-64 years, were already symptomatic at the start of the study. Our findings suggest that the prevalence of GNE p.M712T is higher in the Sangesar population, comprised mostly of Muslim and Bahai descendants, compared with the general world population. Additional HIBM distribution studies are warranted within various subpopulations of Iran.
Hereditary inclusion body myopathy (HIBM) is a young-adult onset autosomal recessive disorder caused by a hypomorphic rate limiting enzyme of sialic acid biosynthesis. The enzyme is UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, and is encoded by the GNE gene. HIBM causes slowly progressive muscle weakness and atrophy. Patients are typically diagnosed at 20-30 years of age, and most patients are incapacitated and wheelchair-confined by 30-50 years of age. Some sialic acid containing glycoproteins, including neural cell adhesion molecule (NCAM), are hyposialylated in HIBM muscle biopsy samples. We developed a method to allow detection of serum NCAM sialylation using Western blot, and tested serum samples from several patients and a HIBM mouse model. Preliminary results showed a clear difference in polysialylated and hyposialylated forms of NCAM extracted from serum, and showed NCAM is hyposialylated in HIBM serum samples. This initial finding may prove useful in reducing the need for serial muscle biopsies in HIBM treatment trials. Additional studies are underway to further validate this finding and to evaluate the specificity, reliability, and robustness of this potential serum biomarker for HIBM.
ProTides comprise an important class of prodrugs currently marketed and developed as antiviral and anticancer therapies. The ProTide technology employs a phosphate masking groups capable of providing more favorable drug-like properties and an intracellular activation mechanism for enzyme-mediated release of a nucleoside monophosphate. Herein we describe the application of phosphoramidate chemistry to 1,3,4-O-acetylated N-acetylmannosamine (Ac3ManNAc) to deliver ManNAc-6-phosphate (ManNAc-6-P), a critical intermediate in sialic acid biosynthesis. Sialic acid deficiency is a hallmark of GNE myopathy, a rare congenital disorder of glycosylation (CDG) caused by mutations in GNE that limit the production of ManNAc-6-P. Synthetic methods were developed to provide a library of Ac3ManNAc-6phosphoramidates that were evaluated in a series of studies for their potential as a treatment for GNE myopathy. Prodrug 12b showed rapid activation in a carboxylesterase (CPY) enzymatic assay and favorable ADME properties, while also being more effective than ManNAc at increasing sialic acid levels in GNE-deficient cell lines than ManNAc. These 2 results provide a potential platform to address substrate deficiencies in GNE myopathy and other CDGs.
Hereditary Inclusion Body Myopathy (HIBM, IBM2, MIM:600737) is an autosomal recessive adult onset progressive muscle wasting disorder. It is associated with the degeneration of distal and proximal muscles, while often sparing the quadriceps. The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneunaminic acid (sialic acid). Affected individuals have been identified with mutations in the GNE gene. In the present study, the GNE coding region of 136 symptomatic patients were sequenced. A total of 41 patients were found to have GNE mutations. Eight novel mutations were discovered among seven patients. Of the eight novel mutations, seven were missense (p.I150V, p.Y186C, p.M265T, p.V315T, p.N317D, p.G669R, and p.S699L) and one was nonsense (p.W495X), all of which span the epimerase, kinase, and allosteric domains of GNE. In one patient, one novel mutation was found in the allosteric region and kinase domain of the GNE gene. Mutations in the allosteric region lead to a different disease, sialuria; however, this particular mutation has not been described in patients with sialuria. The pathological significance of this variation with GNE function remains unknown and further studies are needed to identify its connection with HIBM. These findings further expand the clinical and genetic spectrum of HIBM.
GNE myopathy, or Hereditary Inclusion Body Myopathy (HIBM), is an autosomal recessive adult-onset muscle wasting disorder caused by hypomorphic GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase), the rate-limiting enzyme of sialic acid (Sia) biosynthesis. Unlike human patients, mice bearing the Gne M712T/M712T genotype in C57BL/6 background strain suffer severe glomerular hematuria, show incomplete podocyte development, and do not survive beyond the first few days of life. We crossed heterozygous mice (Gne M712T/+) of B6 strain with FVB strain mice. In mixed inbred FVB; B6 background, the homozygous mice showed attenuated glomerular disease and survived longer (mean survival 23.48 ± 13.99 weeks, n=73). Within the first 2 generations, 26% of the homozygous mice survived past the age of 40 weeks, and within the subsequent 3 generations the frequency of homozygous mice surviving past age of 40 weeks had increased to 44%. Additionally, the homozygous mice (Gne M712tM712t) living past the age of 42 weeks began to show muscle pathology. These findings suggest that the mouse background strain affects the disease phenotype, and that natural selection may have an influence on the long-term maintenance of mouse models of human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.