When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.
The Escherichia coli strain causing a large outbreak of haemolytic uraemic syndrome and bloody diarrhoea in Germany in May and June 2011 possesses an unusual combination of pathogenic features typical of enteroaggregative E. coli together with the capacity to produce Shiga toxin. Through rapid national and international exchange of information and strains the known occurrence in humans was quickly assessed. We describe simple diagnostic screening tools to detect the outbreak strain in clinical specimens and a novel real-time PCR for its detection in foods.
Among the intestinal pathogenic Escherichia coli, enteroinvasive E. coli (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to Shigella, the ethiological agent of bacillary dysentery. Despite EIEC belong to the same pathotype of Shigella, they neither have the full set of traits that define Shigella nor have undergone the extensive gene decay observed in Shigella. Molecular analysis confirms that EIEC are widely distributed among E. coli phylogenetic groups and correspond to bioserotypes found in many E. coli serogroups. Like Shigella, also in EIEC the critical event toward a pathogenic life-style consisted in the acquisition by horizontal gene transfer of a large F-type plasmid (pINV) containing the genes required for invasion, intracellular survival, and spreading through the intestinal mucosa. In Shigella, the ample gain in virulence determinants has been counteracted by a substantial loss of functions that, although important for the survival in the environment, are redundant or deleterious for the life inside the host. The pathoadaptation process that has led Shigella to modify its metabolic profile and increase its pathogenic potential is still in infancy in EIEC, although maintenance of some features typical of E. coli might favor their emerging relevance as intestinal pathogens worldwide, as documented by recent outbreaks in industrialized countries. In this review, we will discuss the evolution of EIEC toward Shigella-like invasive forms going through the epidemiology, including the emergence of new virulent strains, their genome organization, and the complex interactions they establish with the host.
Enteropathogenic Escherichia coli (EPEC) and enterohemorragic E. coli (EHEC) possess a pathogenicity island (PAI), termed the locus of enterocyte effacement (LEE), which confers the capability to cause the characteristic attaching and effacing lesions of the brush border. Due to this common property, these organisms are also termed attaching and effacing E. coli (AEEC). Sequencing of the EHEC O157 genome recently revealed the presence of other putative PAIs in the chromosome of this organism. In this article, we report on the presence of four of those PAIs in a panel of 133 E. coli strains belonging to different pathogroups and serotypes. One of these PAIs, termed O122 in strain EDL 933 and SpLE3 in strain Sakai, was observed in most of the AEEC strains examined but not in the other groups of E. coli. It was also found to contain the virulence-associated gene efa1/lifA. In EHEC O157, PAI O122 is located 0.7 Mb away from the LEE. Conversely, we demonstrated that in many EHEC non-O157 strains and EPEC strains belonging to eight serogroups, PAI O122 and the LEE are physically linked to form a cointegrated structure. This structure can be considered a mosaic PAI that could have been acquired originally by AEEC. In some clones, such as EHEC O157, the LEE-O122 mosaic PAI might have undergone recombinational events, resulting in the insertion of the portion referred to as PAI O122 in a different location.Certain strains of Escherichia coli are capable of causing diarrheal diseases in human beings and animals by colonizing the intestinal mucosa with a characteristic mechanism known as attaching and effacing (A/E) (28). Colonizing bacteria induce the effacement of epithelial cell microvilli and develop intimate contact with the cell membrane (9, 13). The E. coli strains that show this pathogenic property are referred as attaching and effacing E. coli (AEEC). AEEC can be divided into two main pathogroups: enterohemorragic E. coli (EHEC) and enteropathogenic E. coli (EPEC) (28). EHEC strains produce Shiga toxins (Stx) and cause severe human illnesses, such as hemorrhagic colitis and hemolytic-uremic syndrome (14,30). The majority of the cases of disease worldwide are caused by strains of serotype O157:H7, but infections caused by EHEC strains belonging to serogroups other than O157, such as O26, O111, O103, and O145, have been increasingly reported (7,14). EPEC strains do not produce Stx and are not associated with hemolytic-uremic syndrome but represent an important cause of diarrhea in children, in particular in nonindustrialized countries (28), and in young animals of various species (2,3,33,36,43).The capability to cause A/E lesions is conferred by the presence of a chromosomal genetic element defined as the locus of enterocyte effacement (LEE) (10, 23). The LEE is constituted by 41 open reading frames (ORFs) organized in five polycistronic operons: LEE1, LEE2, LEE3, tir, and LEE4 (24). The operons LEE1, LEE2, and LEE3 encode the components of a type III secretion system (24), while the LEE4 operon encode proteins whic...
BACKGROUND: Hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli (STEC-HUS) is a severe acute illness without specific treatment except supportive care; fluid management is concentrated on preventing fluid overload for patients, who are often oligoanuric. Hemoconcentration at onset is associated with more severe disease, but the benefits of volume expansion after hemolytic uremic syndrome (HUS) onset have not been explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.