You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
Electrospray has been recognized as an efficient technique for the fabrication of polymer micro and nanosystems and recently it was applied to lipids. The objective of this study was to assess the potential of electrospray for the encapsulation of insulin into lipid particles. Spherical particles of about 1 lm were obtained jetting a propanolic solution of palmitic or stearic acid and ethylcellulose or Pluronic F127 in a 10:1 or 20:1 (w/w) ratio under an electric field of 30 kV. Insulin was entrapped into the particles with high encapsulation efficiency by the formation of an ion-pair with sodium dodecyl sulphate. Far-ultraviolet circular dichroism spectroscopy indicated that electrospray did not modify the secondary structure of insulin. An in vitro prolonged release over 24 hours was observed after an initial burst effect. This study demonstrates that electrospray represents a viable new alternative for preparing in a single step peptide-protein loaded lipid based microspheres directly in powder form.
A new poly(amidoamine)-cholesterol (PAA-cholesterol) conjugate was synthesized, characterized and used to produce nanoparticles by the electrospraying technique. The electrospraying is a method of liquid atomization that consists in the dispersion of a solution into small charged droplets by an electric field. Tuning the electrospraying process parameters spherical PAA-chol nanoparticles formed. The PAA-cholesterol nanoparticles showed sizes lower than 500 nm and spherical shape. The drug incorporation capacity was investigated using tamoxifen, a lipophilic anticancer drug, as model drug. The incorporation of the tamoxifen did not affect the shape and sizes of nanoparticles showing a drug loading of 40%. Tamoxifen-loaded nanoparticles exhibited a higher dose-dependent cytotoxicity than free tamoxifen, while blank nanoparticles did not show any cytotoxic effect at the same concentrations. The electrospray technique might be proposed to produce tamoxifen-loaded PAA-chol nanoparticle in powder form without any excipient in a single step.
The electrospraying method might be proposed to prepare in a single-step monodisperse lipid-based micro- and nanoparticles in powder form for drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.