Conductometric monitoring of protein-protein and protein-sterol interactions is here proved feasible by coupling quartz crystal microbalance with dissipation monitoring (QCM_D) to nucleic acid programmable protein arrays (NAPPA). The conductance curves measured in NAPPA microarrays printed on quartz surface allowed the identification of binding events between the immobilized proteins and the query. NAPPA allows the immobilization on the quartz surface of a wide range of proteins and can be easily adapted to generate innumerous types of biosensors. Indeed multiple proteins on the same quartz crystal have been tested and envisaged proving the possibility of analyzing the same array for several distinct interactions. Two examples of NAPPA-based conductometer applications with clinical relevance are presented herein, the interaction between the transcription factors Jun and ATF2 and the interaction between Cytochrome P540scc and cholesterol.
This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide) and medicine (drug administration, cancer diagnosis and prognosis) by means of amperometric, quartz crystal microbalance with frequency (QCM_F) and quartz crystal microbalance with dissipation monitoring (QCM_D) technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.
Human lymphocytes gene expression before and after PHA stimulation is monitored by DNASER technology, a novel bioinstrumentation entirely constructed in our laboratories as previously reported. The validity of the DNASER measurements is confirmed by standard fluorescence microscopy equipped with CCD. The human lymphocytes gene expression here experimentally probed using commercially available DNA microarrays such as Human Starter, appears compatible both with independent bioinformatic prediction and with existing experimental data, pointing to MYC as the key gene in the G0-G1 transition induced by PHA in resting lymphocytes. It does not escape our notice that in cell biology and cancer research DNASER technology based on microarray constructed with few leader genes identified from bioinformatics represents a meaningful cost-effective route alternative to massive frequently misleading molecular genomics.
The methodological aspects are here presented for the NAPPA (Nucleic Acid Programmable Protein Arrays) characterization by atomic force microscopy and anodic porous alumina. Anodic Porous Alumina represents also an advanced on chip laboratory for gene expression contained in an engineered plasmid vector. The results obtained with CdK2, CDKN1A, p53 and Jun test genes expressed on NAPPA and the future developments are discussed in terms of our pertinent and recent Patents and of their possibility to overcome some limitations of present fluorescence detection in probing protein-protein interaction in both basic sciences and clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.