In view of their protective effects on LDL and erythrocytes against oxidative damage, these phenolic compounds might have potential applications in prooxidant state-related cardiovascular disorders.
Three new diarylheptanoids and one new monoterpenoid were isolated from the rhizomes of Zingiber officinale together with four known diarylheptanoids, 5-8. Their structures were elucidated mainly by spectroscopic methods, and they were deduced as 5-[4-hydroxy-6-(4-hydroxyphenethyl)tetrahydro-2 H-pyran-2-yl]-3-methoxybenzene-1,2-diol (1), sodium (E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3 S-sulfonate (2), sodium (E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3 R-sulfonate (3), and hydroxycineole-10-O-beta-D-glucopyranoside (4), respectively. Among the isolated compounds, compounds 1, 5, and 8 exhibited strong superoxide anion radical scavenging activities in a phenazine methosulfate-NADH system. In a more biological system, these compounds were demonstrated to exhibit potent protection against lipid peroxidation in mouse liver microsomes exposed to oxidative conditions. These compounds were subsequently tested on primary cultures of rat hepatocytes exposed to oxidative damage, and definitive cytoprotective actions were found.
Searching for depigmenting agents from natural sources has become a new direction in the cosmetic industry as natural products are generally perceived as relatively safer. In our previous study, selected Chinese medicines traditionally used to treat hyperpigmentation were tested for anti-hyperpigmentary effects using a melan-a cell culture model. Among the tested chemical compounds, 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were found to possess hypopigmentary effects. Western blot analysis, reverse transcriptase polymerase chain reaction (RT-PCR), cyclic adenosine monophosphate (cAMP) assay, protein kinase A (PKA) activity assay, tyrosinase inhibition assay and lipid peroxidation inhibition assay were performed to reveal the underlying cellular and molecular mechanisms of the hypopigmentary effects. 4-Ethylresorcinol and 4-ethylphenol attenuated mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation. 1-Tetradecanol was able to attenuate protein expression of tyrosinase. The hypopigmentary actions of 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were associated with regulating downstream proteins along the PKA pathway. 4-Ethylresorcinol was more effective in inhibiting melanin synthesis when compared to 4-ethylphenol and 1-tetradecanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.