Due to their interesting properties, research on colloidal nanocrystals has moved in the last few years from fundamental research to first applications in materials science and life sciences. In this review some recent biological applications of colloidal nanocrystals are discussed, without going into biological or chemical details. First, the properties of colloidal nanocrystals and how they can be synthesized are described. Second, the conjugation of nanocrystals with biological molecules is discussed. And third, three different biological applications are introduced: (i) the arrangement of nanocrystal-oligonucleotide conjugates using molecular scaffolds such as single-stranded DNA, (ii) the use of nanocrystal-protein conjugates as fluorescent probes for cellular imaging, and (iii) a motility assay based on the uptake of nanocrystals by living cells.
The uptake of colloidal semiconductor nanocrystals by a large range of eukaryotes (see Figure) is directly correlated with the cell motility, as has been shown by comparing the motions of cancerous and healthy human breast cells. The nanocrystals are more photochemically robust than organic dyes and provide a powerful tool for studying the processes of cell motility and migration—behaviors that are responsible for metastases of primary cancers.
We have shown previously that epimorphin (EPM), a protein expressed on the surface of myoepithelial and fibroblast cells of the mammary gland, acts as a multifunctional morphogen of mammary epithelial cells. Here, we present the molecular mechanism by which EPM mediates luminal morphogenesis. Treatment of cells with EPM to induce lumen formation greatly increases the overall expression of transcription factor CCAAT/enhancer binding protein (C/EBP)β and alters the relative expression of its two principal isoforms, LIP and LAP. These alterations were shown to be essential for the morphogenetic activities, since constitutive expression of LIP was sufficient to produce lumen formation, whereas constitutive expression of LAP blocked EPM-mediated luminal morphogenesis. Furthermore, in a transgenic mouse model in which EPM expression was expressed in an apolar fashion on the surface of mammary epithelial cells, we found increased expression of C/EBPβ, increased relative expression of LIP to LAP, and enlarged ductal lumina. Together, our studies demonstrate a role for EPM in luminal morphogenesis through control of C/EBPβ expression.
Soft X-ray microscopy is ideally suited to visualizing and quantifying biological cells. Specimens, including eukaryotic cells, are imaged intact, unstained and fully hydrated, and therefore visualized in a near-native state. The contrast in soft X-ray microscopy is generated by the differential attenuation of X-rays by the molecules in the specimen-water is relatively transmissive to this type of illumination compared to carbon and nitrogen. The attenuation of X-rays by the specimen follows the Beer-Lambert law, and therefore both linear and a quantitative measure of thickness and chemical species present at each point in the cell. In this chapter, we will describe the procedures and computational methods that lead to 50 nm (or better) tomographic reconstructions of cells using soft X-ray microscope data, and the subsequent segmentation and analysis of these volumetric reconstructions. In addition to being a high-fidelity imaging modality, soft X-ray tomography is relatively high-throughput; a complete tomographic data set can be collected in a matter of minutes. This new modality is being applied to imaging cells that range from small prokaryotes to stem cells obtained from mammalian tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.