While Brassica oleracea vegetables have been linked to cancer prevention, the exact mechanism remains unknown. Regulation of gene expression by cross-species microRNAs has been previously reported; however, its link to cancer suppression remains unexplored. In this study we address both issues. We confirm plant microRNAs in human blood in a large nutrigenomics study cohort and in a randomized dose-controlled trial, finding a significant positive correlation between the daily amount of broccoli consumed and the amount of microRNA in the blood. We also demonstrate that Brassica microRNAs regulate expression of human genes and proteins in vitro, and that microRNAs cooperate with other Brassica-specific compounds in a possible cancer-preventive mechanism. Combined, we provide strong evidence and a possible multimodal mechanism for broccoli in cancer prevention.
Over the past four decades, due to cultural and social changes, women in the developed world have significantly delayed childbirth. This trend is even worse for patients who attend infertility clinics. It is well-known that live birth rates in women older than 35 are significantly lower than in those younger, both naturally and with assisted reproduction. Fertility decline is, in part, due to an increase in oocyte aneuploidy that leads to a reduced embryo quality, as well as an increased incidence of miscarriages and birth defects. Here we show that aging-associated malfunction is not restricted to the oocyte, as cumulus granulosa cells also display a series of defects linked to mitochondrial activity. In, both, human and mouse model, a decline in cumulus cell function due to increased maternal age is accompanied by a decreased expression of enzymes responsible for Coenzyme Q (CoQ) production, particularly Pdss2 and CoQ6. In an aged mouse model supplementation with Coenzyme Q10—a potent stimulator of mitochondrial function—restored cumulus cell number, stimulated glucose uptake, and increased progesterone production. CoQ10 supplementation might, thus, improve oocyte and cumulus cells quantity and quality, by improving the mitochondrial metabolism in females of advanced maternal age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.