In this paper, we prove, the existence of a renormalized solution for a class of nonlinear parabolic problems whose prototype is [Formula: see text] where QT = Ω × (0, T), Ω is an open and bounded subset of ℝN, N ≥ 2, T > 0, Δp is the so called p-Laplace operator, [Formula: see text], c ∈ (Lr(QT))N with [Formula: see text], [Formula: see text], b ∈ LN+2, 1(QT), f ∈ L1(QT), g ∈ (Lp'(QT))N and u0 ∈ L1(Ω).
We study the existence and uniqueness for weak solutions to some classes of anisotropic elliptic Dirichlet problems with data belonging to the natural dual space
We consider a class of Dirichlet boundary problems for nonlinear elliptic equations with a first order term. We show how the summability of the gradient of a solution increases when the summability of the datum increases. We also prove comparison principle which gives in turn uniqueness results by strenghtening the assumptions on the operators
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.