Microvesicles represent a newly identified mechanism of intercellular communication. Two different types of microvesicles have been identified: membrane-derived vesicles (EVs) and exosomes. EVs originate by direct budding from the plasma membrane, while exosomes arise from ectocytosis of multivesicular bodies. Recent attention has focused on the capacity of EVs to alter the phenotype of neighboring cells to make them resemble EV-producing cells. Stem cells are an abundant source of EVs, and the interaction between stem cells and the microenvironment (i.e., stem cell niche) plays a critical role in determining stem cell phenotype. The stem cell niche hypothesis predicts that stem cell number is limited by the availability of niches releasing the necessary signals for self-renewal and survival, and the niche thus provides a mechanism for controlling and limiting stem cell numbers. EVs may play a fundamental role in this context by transferring genetic information between cells. EVs can transfer mRNA and microRNA to target cells, both of which may be involved in the change in target-cell phenotype towards that of EV-producing cells. The exchange of genetic information may be bidirectional, and EV-mediated transfer of genetic information after tissue damage may reprogram stem cells to acquire the phenotypic features of the injured tissue cells. In addition, stem cell-derived EVs may induce the de-differentiation of cells that survive injury by promoting their reentry into the cell cycle and subsequently increasing the possibility of tissue regeneration.
Multiple sclerosis (MS) is the most diffuse chronic inflammatory disease of the central nervous system. Both immune-mediated and neurodegenerative processes apparently play roles in the pathogenesis of this disease. Heat shock proteins (HSPs) are a family of highly evolutionarily conserved proteins; their expression in the nervous system is induced in a variety of pathologic states, including cerebral ischemia, neurodegenerative diseases, epilepsy, and trauma. To date, investigators have observed protective effects of HSPs in a variety of brain disease models (e.g. of Alzheimer disease and Parkinson disease). In contrast, unequivocal data have been obtained for their roles in MS that depend on the HSP family and particularly on their localization (i.e. intracellular or extracellular). This article reviews our current understanding of the involvement of the principal HSP families in MS.
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc.
Since its identification, HCV has been considered one of the main causes of hepatitis and liver cancer. Currently, the molecular mechanisms of HCC development induced by HCV infection have not been sufficiently clarified. The recent discovery of novel treatments that inhibit HCV replication gave rise to new questions concerning HCC mechanisms. In particular, the HCV eradication mediated by new direct-acting antiviral (DAAs) drugs does not exclude the possibility of de novo HCC development; this finding opened more questions on the interplay between liver cells and the virus. Different groups have investigated the pathways leading to cancer recurrence in patients treated with DAAs. For this reason, we tried to gain molecular insights into the changes induced by HCV infection in the target liver cells. In particular, we observed an increase in microRNA34a (miR34a) expression following HCV infection of HCC cell line Huh7.5. In addition, Huh7.5 treated with extracellular vesicles (EVs) from the previously HCV-infected Huh7.5 underwent apoptosis. Since miR34 expression was increased in Huh7.5 EVs, we hypothesized a paracrine mechanism of viral infection mediated by miR34a cargo of EVs. The balance between viral infection and cell transformation may raise some questions on the possible use of antiviral drugs in association with antineoplastic treatment.
Due to their immunomodulatory potential and release of trophic factors that promote healing, mesenchymal stromal cells (MSCs) are considered important players in tissue homeostasis and regeneration. MSCs have been widely used in clinical trials to treat multiple conditions associated with inflammation and tissue damage. Recent evidence suggests that most of the MSC therapeutic effects are derived from their secretome, including the extracellular vesicles, representing a promising approach in regenerative medicine application to treat organ failure as a result of inflammation/fibrosis. The recent outbreak of respiratory syndrome coronavirus, caused by the newly identified agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has forced scientists worldwide to use all available instruments to fight the infection, including the inflammatory cascade caused by this pandemic disease. The use of MSCs is a valid approach to combat organ inflammation in different compartments. In addition to the lungs, which are considered the main inflammatory target for this virus, other organs are compromised by the infection. In particular, the liver is involved in the inflammatory response to SARS-CoV-2 infection, which causes organ failure, leading to death in coronavirus disease 2019 (COVID-19) patients. We herein summarize the current implications derived from the use of MSCs and their soluble derivatives in COVID-19 treatment, and emphasize the potential of MSC-based therapy in this clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.