Malfunctions of circadian clock trigger abnormal cellular processes and influence tumorigenesis. Using an in vitro and in vivo xenograft model, we show that circadian clock disruption via the downregulation of the core-clock genes BMAL1, PER2, and NR1D1 impacts the circadian phenotype of MYC, WEE1, and TP53, and affects proliferation, apoptosis, and cell migration. In particular, both our in vitro and in vivo results suggest an impairment of cell motility and a reduction in micrometastasis formation upon knockdown of NR1D1, accompanied by altered expression levels of SNAI1 and CD44. Interestingly we show that differential proliferation and reduced tumour growth in vivo may be due to the additional influence of the host-clock and/or to the 3D tumour architecture. Our results raise new questions concerning host–tumour interaction and show that core-clock genes are involved in key cancer properties, including the regulation of cell migration and invasion by NR1D1 in zebrafish xenografts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.