We show that Cohen’s Kappa and Matthews Correlation Coefficient (MCC), both extended and contrasted measures of performance in multi-class classification, are correlated in most situations, albeit can differ in others. Indeed, although in the symmetric case both match, we consider different unbalanced situations in which Kappa exhibits an undesired behaviour, i.e. a worse classifier gets higher Kappa score, differing qualitatively from that of MCC. The debate about the incoherence in the behaviour of Kappa revolves around the convenience, or not, of using a relative metric, which makes the interpretation of its values difficult. We extend these concerns by showing that its pitfalls can go even further. Through experimentation, we present a novel approach to this topic. We carry on a comprehensive study that identifies an scenario in which the contradictory behaviour among MCC and Kappa emerges. Specifically, we find out that when there is a decrease to zero of the entropy of the elements out of the diagonal of the confusion matrix associated to a classifier, the discrepancy between Kappa and MCC rise, pointing to an anomalous performance of the former. We believe that this finding disables Kappa to be used in general as a performance measure to compare classifiers.
We consider a family of non-deterministic fluid models that can be approximated under heavy traffic conditions by a multidimensional reflected fractional Brownian motion (rfBm). Specifically, we prove a heavy traffic limit theorem for multi-station fluid models with feedback and non-deterministic arrival process generated by a large enough number of heavy tailed ON/OFF sources, say N . Scaling in time by a factor r and in state space conveniently, and letting N and r approach infinity (in this order) we prove that the scaled immediate workload process converges in some sense to a rfBm.
We prove that, under rather general conditions, the law of a continuous Gaussian process represented by a stochastic integral of a deterministic kernel, with respect to a standard Wiener process, can be weakly approximated by the law of some processes constructed from a standard Poisson process. An example of a Gaussian process to which this result applies is the fractional Brownian motion with any Hurst parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.