Two Fe–Mn crusts among 35 samples, from six seamounts in the Canary Island Seamount Province, were selected as representatives of the endpoint members of two distinct types of genetic processes, i.e., mixed diagenetic/hydrogenetic and purely hydrogenetic. High-resolution analyses pursued the main aim of distinguishing the critical elements and their association with mineral phases and genetic processes forming a long-lived Fe–Mn crust. The Fe–Mn crust collected on the Tropic Seamount is composed of dense laminations of Fe-vernadite (>90%) and goethite group minerals, reflecting the predominance of the hydrogenetic process during their formation. Based on high-resolution age calculation, this purely hydrogenetic crust yielded an age of 99 Ma. The Fe–Mn crust collected on the Paps Seamount shows a typical botryoidal surface yielding an age of 30 Ma. electron probe microanalyzer (EPMA) spot analyses show two main types of manganese oxides, indicating their origin: (i) hydrogenetic Fe-vernadite, the main Mn oxide, and (ii) laminations of interlayered buserite and asbolane. Additionally, the occurrence of calcite, authigenic carbonate fluor-apatite (CFA) and palygorskite suggests early diagenesis and pervasive phosphatization events. Sequential leaching analysis indicated that Co, Ni, Cu, Ba and Ce are linked to Mn minerals. Therefore, Mn-oxides are enriched in Ni and Cu by diagenetic processes or in Co and Ce by hydrogenetic processes. On the other hand, Fe-oxides concentrate V, Zn, As and Pb. Moreover, the evidence of HREE enrichment related to Fe-hydroxides is confirmed in the mixed hydrogenetic/diagenetic crust.
A statistical procedure designed to obtain representative size distributions for different morphologies and arrangements of pyrite is described here. This statistical procedure is applied to data acquired during scanning electron microscopy (SEM) and high-resolution X-ray tomography (micro-CT) analyses. The statistical procedure was tested in methane-derived carbonate pipes recovered in the Gulf of Cadiz. These samples contain abundant pyrite together with pseudomorph iron oxyhydroxides showing multiple morphologies including euhedral crystals, framboids, and sunflowers (framboidal core with outer crystals).
The SEM analysis consisted in the establishment of independent populations of pyrite and iron oxyhydroxides grouped by morphology and arrangement and the determination of its size distributions. Micro-CT analysis included a determination of the 3D volume of pyrite from the density difference between pyrite and the rest of mineral forming the samples. The use of the micro-CT technique implies that minerals with similar attenuation coefficients than those of pyrite are scarce or not present in the studied samples. A filtering process was applied to the 3D volume. This filtering process consisted of the selection of objects with corrected sphericity greater than 0.80, discrete compactness greater than 0.60, elongation and flatness of the circumscribed 3D ellipsoid less than 1.80 and the sum of the elongation and flatness less than 3. Objects with shapes similar to those expected in pyrite (spheroidal and regular shapes) were selected with this filtering process. The optimal mixture of lognormal size distributions was obtained applying statistical techniques to the entire size distribution represented by the filtered objects. The correspondence between size distributions obtained during the SEM and the micro-CT analyses was done by matching statistical parameters and using 3D renderings. The representative size distributions of pyrite as determined by the proposed 3D processing methodology can be used to accurately quantify the paleo-environmental conditions of pyrite formation, which would solve some of the limitations resulting from analyses based on 2D images
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.