Art heritage cities are popular tourist destinations but for many of them overcrowding is becoming an issue. In this paper, we address the problem of modeling and analytically studying the flow of tourists along the narrow alleys of the historic center of a heritage city. We initially present a mean field game model, where both continuous and switching decisional variables are introduced to respectively describe the position of a tourist and the point of interest that it may visit. We prove the existence of a mean field game equilibrium. A mean field game equilibrium is Nash-type equilibrium in the case of infinitely many players. Then, we study an optimization problem for an external controller who aims to induce a suitable mean field game equilibrium.Keywords Tourist flow optimal control · mean field games · switching variables · dynamics on networks Mathematics Subject Classification (2010) 91A13 · 49L20 · 90B20 · 91A80
In this paper we investigate different strategies to overcome the scallop theorem. We will show how to obtain a net motion exploiting the fluid's type change during a periodic deformation. We are interested in two different models: in the first one that change is linked to the magnitude of the opening and closing velocity. Instead, in the second one it is related to the sign of the above velocity. An interesting feature of the latter model is the introduction of a delay-switching rule through a thermostat. We remark that the latter is fundamental in order to get both forward and backward motion.
This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is illustrated via numerical studies .
In this paper we consider a mean field approach to modeling the agents flow over a transportation network. In particular, beside a standard framework of mean field games, with controlled dynamics by the agents and costs mass-distribution dependent, we also consider a path preferences dynamics obtained as a generalization of the so-called noisy best response dynamics. We introduce this last dynamics to model the fact that the agents choose their path on the basis of both the network congestion state and the observation of the agents' decision that have preceded them. We prove the existence of a mean field equilibrium obtained as a fixed point of a map over a suitable set of time-varying mass-distributions, defined edge by edge in the network. We also address the case where the admissible set of controls is suitably bounded depending on the mass-distribution on the edge itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.