Doxorubicin (DOX), an antineoplastic agent widely used for the treatment of cancer, belongs to the anthracycline family of antitumor antibiotics. DOX may undergo one-electron reduction to the corresponding semiquinone free radical by flavin-containing reductases. Under aerobic conditions, the semiquinone radical reacts rapidly with oxygen to generate superoxide anion, undergoing redox cycling. At moderate concentrations, reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. We have shown that DOX increased phosphorylation of enzymes comprising mitogen-activated protein (MAP) kinase cascades in primary hepatocyte cultures, and that this action was independent of oxidant damage. In particular, extracellular signal-regulated kinase (ERK) was phosphorylated by the drug treatment. In this work, we have determined the possible involvement of particular free radicals in DOX-induced ERK phosphorylation in hepatocyte cultures by using specific free radical scavengers. The levels of ERK phosphorylation were measured by Western blot analysis with an anti-Thr202/Tyr204-phosphorylated p44/p42 MAPK antibody. Deferoxamine (DFO; iron chelator), catalase (hydrogen peroxide-removing enzyme), or alpha-tocopherol (peroxyl-radical scavenger) did not affect DOX-increased ERK phosphorylation levels. However, the cell-permeable superoxide dismutase mimetic MnTBAP and the flavin-containing enzyme inhibitor diphenyleneiodonium reverted DOX-induced effects. These results suggest that superoxide anions, probably generated by DOX metabolism, are involved in the effects of the anthracycline on the MAP kinase cascade activation.
Doxorubicin (DOX) is a potent anticancer drug, whose clinical use is limited on account of its toxicity. DOX cytotoxic effects have been associated with reactive oxygen species (ROS) generated during drug metabolism. ROS induce signaling cascades leading to changes in the phosphorylation status of target proteins, which are keys for cell survival or apoptosis. The mitogen-activated protein kinase (MAPK) cascades are routes activated in response to oxidative stress. In this work, the effects of DOX on cytotoxicity, indicators of oxidative stress (malondialdehyde -MDA- and GSH), and the phosphorylation status of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 kinases were analyzed in primary cultures of rat hepatocytes. DOX (1-50 microM) did not modify lactate dehydrogenase (LDH) release into the medium, the levels of MDA (determined by high-performance liquid chromatography [HPLC]) or the intracellular GSH during the incubation time up to 6 h. GSH levels from mitochondria extracted by Percoll gradient from cultured hepatocytes were not modified by DOX, thus excluding its depletion or any impaired mitochondrial uptake. Characterization of proteins by Western blot analysis revealed that DOX increased phosphorylation of p38 kinases and JNK1 and JNK2 in a dose- and time-dependent manner. DOX also increased ERK2 phosphorylation at latter time points. In conclusion, DOX triggers activation of ERK, JNK, and p38 kinases in primary cultures of rat hepatocytes independently of oxidant damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.