Long-term sepsis survivors sustain cryptic brain injury that leads to cognitive impairment, emotional imbalance, and increased disability burden. Suitable animal models of sepsis, such as cecal ligation and puncture (CLP), have permitted the analysis of abnormal brain circuits that underlie post-septic behavioral phenotypes. For instance, we have previously shown that CLP-exposed mice exhibit impaired spatial memory together with depleted dendritic arbors and decreased spines in the apical dendrites of pyramidal neurons in the CA1 region of the hippocampus. Here we show that contextual fear conditioning, a form of associative memory for fear, is chronically disrupted in CLP mice when compared to SHAM-operated animals. We also find that the excitatory neurons in the basolateral nucleus of the amygdala (BLA) and the granule cells in the dentate gyrus (DG) display significantly fewer dendritic spines in the CLP group relative to the SHAM mice, although the dendritic arbors and gross morphology of the BLA and DG are comparable between the two groups. Moreover, the basal dendrites of CA1 pyramidal neurons are unaffected in the CLP mice. Taken together, our data indicate that the structural damage in the amygdalar-hippocampal network represents the neural substrate for impaired contextual fear memory in long-term sepsis survivors. Further, our data suggest that the brain injury caused by overwhelming sepsis alters the stability of the synaptic connections involved in associative fear. These results likely have implications for the emotional imbalance observed in human sepsis survivors.
There is a growing awareness of the chronic brain injury that results from the sepsis syndrome. We review experiments in several animal models of sepsis and show in one model, cecal ligation and puncture (CLP), that permanent structural pathology matures after the initial event. Specifically, we observed after exposure to CLP significant decreased spine density on the apical tree, but not the basal tree, of dendrites in the CA1 region of the dorsal hippocampus that was accompanied by a significantly diminished arbor of the apical dendrites, by 8 weeks, but not after 2 weeks. These novel data from dendritic arborizations elaborate information about a cohort of mice that had behaved in spatial memory tasks. These results raise questions about the relationship between long-term behavioral consequences and intervention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.