Loss-of-function mutations in the genes encoding Parkin and PINK1 are causally linked to autosomal recessive Parkinson’s disease (PD). Parkin, an E3 ubiquitin ligase, and PINK1, a mitochondrial-targeted kinase, function together in a common pathway to remove dysfunctional mitochondria by autophagy. Presumably, deficiency for Parkin or PINK1 impairs mitochondrial autophagy and thereby increases oxidative stress due to the accumulation of dysfunctional mitochondria that release reactive oxygen species. Parkin and PINK1 likely have additional functions that may be relevant to the mechanisms by which mutations in these genes cause neurodegeneration, such as regulating inflammation, apoptosis, or dendritic morphogenesis. Here we briefly review what is known about functions of Parkin and PINK1 related to oxidative stress and neurodegeneration.
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of neurons in the substantia nigra that project to the striatum and release dopamine (DA), which is required for normal movement. Common non-motor symptoms likely involve abnormalities with other neurotransmitters, such as serotonin, norepinephrine, acetylcholine, glycine, glutamate and gamma-aminobutyric acid (GABA). As part of a broad effort to provide better PD research tools, the Michael J. Fox Foundation for Parkinson’s Research funded the generation and characterization of knockout (KO) rats for genes with PD-linked mutations, including PINK1, Parkin, DJ-1 and LRRK2. Here we extend the phenotypic characterization of these lines of KO rats to include in vivo microdialysis to measure both basal and potassium-induced release of the above neurotransmitters and their metabolites in the striatum of awake and freely moving rats at ages 4, 8 and 12 months compared to wild-type (WT) rats. We found age-dependent abnormalities in basal DA, glutamate and acetylcholine in PINK1 KO rats and age-dependent abnormalities in basal DA metabolites in Parkin and LRRK2 KO rats. Parkin KO rats had increased glycine release while DJ-1 KO rats had decreased glutamate release and increased acetylcholine release compared to WT rats. All lines except DJ-1 KO rats showed age-dependent changes in release of one or more neurotransmitters. Our data suggest these rats may be useful for studies of PD-related synaptic dysfunction and neurotransmitter dynamics as well as studies of the normal and pathogenic functions of these genes with PD-linked mutations.
Preclinical research on Parkinson's disease has relied heavily on mouse and rat animal models. Initially, PD animal models were generated primarily by chemical neurotoxins that induce acute loss of dopaminergic neurons in the substantia nigra. On the discovery of genetic mutations causally linked to PD, mice were used more than rats to generate laboratory animals bearing PD-linked mutations because mutagenesis was more difficult in rats. Recent advances in technology for mammalian genome engineering and optimization of viral expression vectors have increased the use of genetic rat models of PD. Emerging research tools include "knockout" rats with disruption of genes in which mutations have been causally linked to PD, including LRRK2, α-synuclein, Parkin, PINK1, and DJ-1. Rats have also been increasingly used for transgenic and viral-mediated overexpression of genes relevant to PD, particularly α-synuclein. It may not be realistic to obtain a single animal model that completely reproduces every feature of a human disease as complex as PD. Nevertheless, compared with mice with the same mutations, many genetic rat animal models of PD better reproduce key aspects of PD including progressive loss of dopaminergic neurons in the substantia nigra, locomotor behavior deficits, and age-dependent formation of abnormal α-synuclein protein aggregates. Here we briefly review new developments in genetic rat models of PD that may have greater potential for identifying underlying mechanisms, for discovering novel therapeutic targets, and for developing greatly needed treatments to slow or halt disease progression. © 2018 International Parkinson and Movement Disorder Society.
Loss-of-function mutations in PINK1 are causally linked to recessively inherited Parkinson’s disease (PD), with marked loss of dopaminergic neurons in the substantia nigra that are required for normal movement. PINK1 is a nuclear-encoded mitochondrial-targeted kinase that phosphorylates a conserved serine at amino acid 65 (pS65) in ubiquitin as well as Parkin, another gene with loss-of-function mutations linked to recessive parkinsonism. The steady-state levels of PINK1 protein are very low, even in cells that express PINK1, because PINK1 is normally targeted for degradation after mitochondrial import by a process that is dependent upon mitochondrial membrane potential. Dissipation of the mitochondrial membrane potential with ionophores, such as CCCP and valinomycin, causes the accumulation of PINK1 on the outer mitochondrial membrane, a marked increase of pS65-ubiquitin and the recruitment of Parkin, which targets dysfunctional mitochondria for degradation by autophagy. While the high penetrance of PINK1 mutations establish its critical function for maintaining neurons, the activity of PINK1 in primary neurons has been difficult to detect. Mounting evidence implicates non-neuronal cells, including astrocytes and microglia, in the pathogenesis of both idiopathic and inherited PD. Herein we used both western analysis and immunofluorescence of pS65-ubiquitin to directly compare the activity of PINK1 in primary neurons, astrocytes, microglia, and oligodendrocyte progenitor cells cultured from the brains of wild-type (WT) and PINK1 knockout (KO) rat pups. Our findings that PINK1-dependent ubiquitin phosphorylation is predominantly in astrocytes supports increased priority for research on the function of PINK1 in astrocytes and the contribution of astrocyte dysfunction to PD pathogenesis.
Mutations in PTEN induced kinase 1 (PINK1) cause autosomal recessive Parkinson’s disease (PD). The main pathological hallmarks of PD are loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of protein aggregates containing α-synuclein. Previous studies of PINK1 knockout (PINK1-/-) rats have reported mitochondrial dysfunction, locomotor behavioral deficits, loss of neurons in the substantia nigra and α-synuclein aggregates in various brain regions. We sought to characterize PINK1-/- rats in more detail specifically with respect to α-synuclein pathology because abnormal α-synuclein has been implicated genetically, biophysically and neuropathologically as a mechanism of PD pathogenesis. Moreover, the spontaneous formation of α-synuclein aggregates without α-synuclein overexpression, injection or toxin administration is a rare and important characteristic for an animal model of PD or other synucleinopathies, such as dementia with Lewy bodies and multiple system atrophy. We observed α-synuclein-immunoreactive aggregates in various brain regions of PINK1-/- rats including cortex, thalamus, striatum and ventral midbrain, but nowhere in wild-type (WT) rats. Co-immunofluorescence showed that the α-synuclein-immunoreactive aggregates are both thioflavin S and ubiquitin positive. Many cells in the brains of PINK1-/- rats but not WT rats contained protease-resistant α-synuclein. Total synuclein protein levels were unchanged; however, biochemical fractionation showed a significant shift of α-synuclein from the cytosolic fraction to the synaptic vesicle-enriched fraction of PINK1-/- brain homogenates compared to WT. This data indicates that PINK1 deficiency results in abnormal α-synuclein localization, protease resistance and aggregation in vivo. The PINK1-/- rat could be a useful animal model to study the role of abnormal α-synuclein in PD-related neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.