Heart disease is a complex disease that affects a large number of people worldwide. The timely and accurate detection of heart disease is critical in healthcare, particularly in the field of cardiology. In this article, we proposed a system for diagnosing heart disease that is both efficient and accurate, and it is based on machine-learning techniques. The diagnosis of heart disease is found to be a serious concern, so the diagnosis has to be done remotely and regularly to take the prior action. In the present world, finding the prevalence of heart disease has become a key research area for the researchers and many models have crown proposed in the recent year. The optimization algorithm plays a vital role in heart disease diagnosis with high accuracy. Important goal of this work is to develop a hybrid GCSA which represents a genetic-based crow search algorithm for feature selection and classification using deep convolution neural networks. From the obtained results, the proposed model GCSA shows increase in the classification accuracy by obtaining more than 94% when compared to the other feature selection methods.
A significant number of the world’s population is dependent on rice for survival. In addition to sugarcane and corn, rice is said to be the third most growing staple food in the world. As a consequence of intensive usage of man-made fertilizers, paddy plant diseases have also risen at a faster pace in current history. Exploring the possible disease spread and classifying to detect the consequent impact at an early stage will prevent the loss and improve rice production. The core task of this research is to recognize and quantify different kinds of infections (disease) affecting the paddy plant crop, such as brown spots, bacterial blight, and leaf blasts. Both detection and recognition are carried out based on the risk analysis of paddy crop leaf images. We suggest a Deep Convolutional Neuro-Fuzzy Method (DCNFM) that combines one of the advanced machine learning variant, namely deep convolutional neural networks (DCNNs) and uncertainty handler called fuzzy logic. The synthesis has the benefits of both fuzzy logic and DCNNs when dealing with unstructured data, extracting essential features from imprecise and ambiguous datasets. From the crop field, continuous image data are captured through image sensors and fed as a primary input to the proposed model to analyze the risk and then later to classify them for precise recognition/detection of the disease. The detection/recognition rate of the DCNFM is found to be 98.17% which is comparatively found to be effective in comparison with the traditional CNN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.