We studied the effect of a synthetic GLP-1 receptor agonist, exenatide, a drug approved for the treatment of type 2 diabetes, on the recovery from vascular injury in Zucker (non-diabetic) fatty rats. Exenatide 5.0 microg/kg per day or saline was administered for seven days before, and 21 days after balloon catheter mediated carotid injury. A pair feeding experiment helped differentiate between the drug itself and the known effects of the drug on decreased food intake. Body weight and glucose (weekly), carotid artery I/M ratio, aortic protein eNOS and NFkappaB-p65 were measured. Body weight gain in exenatide rats was significantly lower (53+/-5 vs. 89+/-8 g) than controls. Blood glucose did not change significantly. The I/M ratio in the exenatide group was 0.2+/-0.1 vs. 0.9+/-0.1 in controls (p<0.05). The expression of aortic eNOS was unchanged in exenatide treated rats and a small decrease seen in NFkappaB-p65 expression was not statistically significant. We conclude that exenatide attenuates intimal hyperplasia following balloon catheter induced vascular injury independently of glucose regulation and food intake. Our findings provide additional support for cardiovascular benefits of exenatide, especially in obese and pre-diabetic patients. Further research is needed to elucidate the mechanism underlying these effects.
The effect of intratracheal administration of cyclooxygenase-1 (COX-1)-modified adipose stem cells (ASCs) on monocrotaline-induced pulmonary hypertension (MCT-PH) was investigated in the rat. The COX-1 gene was cloned from rat intestinal cells, fused with a hemagglutanin (HA) tag, and cloned into a lentiviral vector. The COX-1 lentiviral vector was shown to enhance COX-1 protein expression and inhibit proliferation of vascular smooth muscle cells without increasing apoptosis. Human ASCs transfected with the COX-1 lentiviral vector (ASCCOX-1) display enhanced COX-1 activity while exhibiting similar differentiation potential compared with untransduced (native) ASCs. PH was induced in rats with MCT, and the rats were subsequently treated with intratracheal injection of ASCCOX-1 or untransduced ASCs. The intratracheal administration of ASCCOX-1 3 × 10(6) cells on day 14 after MCT treatment significantly attenuated MCT-induced PH when hemodynamic values were measured on day 35 after MCT treatment whereas administration of untransduced ASCs had no significant effect. These results indicate that intratracheally administered ASCCOX-1 persisted for at least 21 days in the lung and attenuate MCT-induced PH and right ventricular hypertrophy. In addition, vasodilator responses to the nitric oxide donor sodium nitroprusside were not altered by the presence of ASCCOX-1 in the lung. These data emphasize the effectiveness of ASCCOX-1 in the treatment of experimentally induced PH.
Vasoactive intestinal peptide (VIP), a 28 amino acid peptide, has been shown to inhibit proliferation of vascular smooth muscle cells. In previous studies VIP and VIP analogues have been used to study the effects of the peptide on vascular smooth muscle cell function. In this study an adenovirus encoding the VIP gene was used to investigate the mechanism of the antiproliferative action of VIP in vascular smooth muscle cells. Primary cultures of aortic and pulmonary artery smooth muscle cells from male Sprague-Dawley rats were transfected with varying concentrations of serotype 5 adenovirus encoding human VIP (Ad5CMVhVIP). Transfection efficiency and subsequently VIP gene expression were confirmed by western blot analysis and immunohistochemistry. In this study a decrease in vascular smooth muscle cell proliferation at vector concentrations of 150, 300 and 600 MOI (multiplicity of infection) was observed. In addition, there was increased production of cAMP in pulmonary artery and aortic smooth muscle cells transfected with VIP. Treatment of cells with a PKA inhibitor (Rp-8-BrcAMPs) restored proliferation to about 80% of control whereas treatment with the PKG inhibitor Rp-8-BrcGMPs had no significant effect suggesting the involvement of the PKA pathway in the antiproliferative actions of VIP.
Vasoactive intestinal peptide (VIP) a 28 amino acid peptide has been shown to inhibit proliferation of vascular smooth muscle cells. The potential use of this peptide as a therapeutic agent in attenuating the increased proliferation of smooth muscle cells observed in disease states such as pulmonary hypertension has been proposed. Investigators have previously used synthetic peptides or analogues of VIP to study these effects in vivo. In this study we used a novel adenovirus encoding the VIP gene to study the mechanism of the antiproliferative action of VIP in vascular smooth muscle cells. Primary cultures of aortic and pulmonary artery smooth muscle cells from male Sprague‐Dawley rats were transfected with varying concentrations of Ad5CMVhVIP. Transfection efficiency and subsequent expression of the VIP gene were confirmed by western blot analysis and immunohistochemistry. We report a dose dependent decrease in proliferation at 150, 300 and 600MOI. In addition, phenotypic changes in the transfected cells from proliferative to contractile were determined by western blot and immunohistochemistry using the contractile proteins actin and calponin. We conclude that adenoviral transfer is an effective tool for studying the effects of VIP in smooth muscle cells and will be useful in identifying the antiproliferative signaling pathway of VIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.