This study examines factors affecting oral bioaccessibility of metals in household dust, in particular metal speciation, organic carbon content, and particle size, with the goal of addressing risk assessment information requirements. Investigation of copper (Cu) and zinc (Zn) speciation in two size fractions of dust (<36 µm and 80-150 µm) using synchrotron X-ray absorption spectroscopy (XAS) indicates that the two metals are bound to different components of the dust: Cu is predominately associated with the organic phase of the dust, while Zn is predominately associated with the mineral fraction. Total and bioaccessible Cu, nickel (Ni), and Zn were determined (on dry weight basis) in the <150 µm size fraction of a set of archived indoor dust samples (n = 63) and corresponding garden soil samples (n = 66) from the City of Ottawa, Canada. The median bioaccessible Cu content is 66 µg g −1 in dust compared to 5 µg g −1 in soil; the median bioaccessible Ni content is 16 µg g −1 in dust compared to 2 µg g −1 in soil; and the median bioaccessible Zn content is 410 µg g −1 in dust compared to 18 µg g −1 in soil. For the same data set, the median total Cu content is 152 µg g −1 in dust compared to 17 µg g −1 in soil; the median total Ni content is 41 µg g −1 in dust compared to 13 µg g −1 in soil; and the median total Zn content is 626 µg g −1 in dust compared to 84 µg g −1 in soil. Organic carbon is elevated in indoor dust (median 28%) compared to soil (median 5%), and is a key factor controlling metal partitioning and therefore bioaccessibility. The results show that house dust and soil have distinct geochemical signatures and should not be treated as identical media in exposure and risk assessments. Separate measurements of the indoor and outdoor environment are essential to improve the accuracy of residential risk assessments.
Background: Studies in areas with relatively high levels of air pollution have found some positive associations between exposures to ambient levels of air pollution and several birth outcomes including low birth weight (LBW). The purpose of this study was to examine the association between LBW among term infants and ambient air pollution, by trimester of exposure, in a region of lower level exposures.
BackgroundNumerous studies have examined associations between air pollution and pregnancy outcomes, but most have been restricted to urban populations living near monitors.ObjectivesWe examined the association between pregnancy outcomes and fine particulate matter in a large national study including urban and rural areas.MethodsAnalyses were based on approximately 3 million singleton live births in Canada between 1999 and 2008. Exposures to PM2.5 (particles of median aerodynamic diameter ≤ 2.5 μm) were assigned by mapping the mother’s postal code to a monthly surface based on a national land use regression model that incorporated observations from fixed-site monitoring stations and satellite-derived estimates of PM2.5. Generalized estimating equations were used to examine the association between PM2.5 and preterm birth (gestational age < 37 weeks), term low birth weight (< 2,500 g), small for gestational age (SGA; < 10th percentile of birth weight for gestational age), and term birth weight, adjusting for individual covariates and neighborhood socioeconomic status (SES).ResultsIn fully adjusted models, a 10-μg/m3 increase in PM2.5 over the entire pregnancy was associated with SGA (odds ratio = 1.04; 95% CI 1.01, 1.07) and reduced term birth weight (–20.5 g; 95% CI –24.7, –16.4). Associations varied across subgroups based on maternal place of birth and period (1999–2003 vs. 2004–2008).ConclusionsThis study, based on approximately 3 million births across Canada and employing PM2.5 estimates from a national spatiotemporal model, provides further evidence linking PM2.5 and pregnancy outcomes.CitationStieb DM, Chen L, Beckerman BS, Jerrett M, Crouse DL, Omariba DW, Peters PA, van Donkelaar A, Martin RV, Burnett RT, Gilbert NL, Tjepkema M, Liu S, Dugandzic RM. 2016. Associations of pregnancy outcomes and PM2.5 in a National Canadian Study. Environ Health Perspect 124:243–249; http://dx.doi.org/10.1289/ehp.1408995
Numerous studies have examined the association of air pollution with preterm birth and birth weight outcomes. Traffic-related air pollution has also increasingly been identified as an important contributor to adverse health effects of air pollution. We employed a national nitrogen dioxide (NO2) exposure model to examine the association between NO2 and pregnancy outcomes in Canada between 1999 and 2008. National models for NO2 (and particulate matter of median aerodynamic diameter <2.5µm (PM2.5) as a covariate) were developed using ground-based monitoring data, estimates from remote-sensing, land use variables and, for NO2, deterministic gradients relative to road traffic sources. Generalized estimating equations were used to examine associations with preterm birth, term low birth weight (LBW), small for gestational age (SGA) and term birth weight, adjusting for covariates including infant sex, gestational age, maternal age and marital status, parity, urban/rural place of residence, maternal place of birth, season, year of birth and neighbourhood socioeconomic status and per cent visible minority. Associations were reduced considerably after adjustment for individual covariates and neighbourhood per cent visible minority, but remained significant for SGA (odds ratio 1.04, 95%CI 1.02-1.06 per 20ppb NO2) and term birth weight (16.2g reduction, 95% CI 13.6-18.8g per 20ppb NO2). Associations with NO2 were of greater magnitude in a sensitivity analysis using monthly monitoring data, and among births to mothers born in Canada, and in neighbourhoods with higher incomes and a lower proportion of visible minorities. In two pollutant models, associations with NO2 were less sensitive to adjustment for PM2.5 than vice versa, and there was consistent evidence of a dose-response relationship for NO2 but not PM2.5. In this study of approximately 2.5 million Canadian births between 1999 and 2008, we found significant associations of NO2 with SGA and term birth weight which remained significant after adjustment for PM2.5, suggesting that traffic may be a particularly important source with respect to the role of air pollution as a risk factor for adverse pregnancy outcomes.
Our findings suggest that outdoor air pollution is a poor predictor of physician visits for allergic rhinitis among the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.