Blood and bone marrow smears from 49 dogs and cats, believed to have myeloproliferative disorders (MPD), were examined by a panel of 10 clinical pathologists to develop proposals for classification of acute myeloid leukemia (AML) in these species. French-American-British (FAB) group and National Cancer Institute (NCI) workshop definitions and criteria developed for classification of AML in humans were adapted. Major modifications entailed revision of definitions of blast cells as applied to the dog and cat, broadening the scope of leukemia classification, and making provisions for differentiating erythremic myelosis and undifferentiated MPD. A consensus cytomorphologic diagnosis was reached in 39 (79.6%) cases comprising 26 of AML, 10 of myelodysplastic syndrome (MDS), and 3 of acute lymphoblastic leukemia (ALL). Diagnostic concordance for these diseases varied from 60 to 81% (mean 73.3 +/- 7.1%) and interobserver agreement ranged from 51.3 to 84.6% (mean 73.1 +/- 9.3%). Various subtypes of AML identified included Ml, M2, M4, M5a, M5b, and M6. Acute undifferentiated leukemia (AUL) was recognized as a specific entity. M3 was not encountered, but this subclass was retained as a diagnostic possibility. The designations M6Er and MDS-Er were introduced where the suffix "Er" indicated preponderance of erythroid component. Chief hematologic abnormalities included circulating blast cells in 98% of the cases, with 36.7% cases having>30% blast cells, and thrombocytopenia and anemia in approximately 86 to 88% of the cases. Bone marrow examination revealed panmyeloid dysplastic changes, particularly variable numbers of megaloblastoid rubriblasts and rubricytes in all AML subtypes and increased numbers of eosinophils in MDS. Cytochemical patterns of neutrophilic markers were evident in most cases of Ml and M2, while monocytic markers were primarily seen in M5a and M5b cases. It is proposed that well-prepared, Romanowsky-stained blood and bone marrow smears should be examined to determine blast cell types and percentages for cytomorphologic diagnosis of AML. Carefully selected areas of stained films presenting adequate cellular details should be used to count a minimum of 200 cells. In cases with borderline diagnosis, at least 500 cells should be counted. The identity of blast cells should be ascertained using appropriate cytochemical markers of neutrophilic, monocytic, and megakaryocytic differentiation. A blast cell count of > 30% in blood and/or bone marrow indicates AML or AUL, while a count of < 30% blasts in bone marrow suggests MDS, chronic myeloid leukemias, or even a leukemoid reaction. Myeloblasts, monoblasts, and megakaryoblasts comprise the blast cell count. The FAB approach with additional criteria should be used to distinguish AUL and various subtypes of AML (Ml to M7 and M6Er) and to differentiate MDS, MDS-ER, chronic myeloid leukemias, and leukemoid reaction. Bone marrow core biopsy and electron microscopy may be required to confirm the specific diagnosis. Immunophenotyping with lineage specific antibodies is i...
OBJECTIVE-To report values for tear production, central corneal touch threshold (CTT), and intraocular pressure (IOP) in healthy guinea pigs and determine results of aerobic bacterial culture and cytologic examination of conjunctival swab specimens. DESIGN-Cross-sectional study. ANIMALS-31 Healthy guinea pigs (62 eyes) of various ages and breeds. PROCEDURES-Tear production was measured by the phenol red thread tear test (PRT) and Schirmer tear test (STT) before and after topical anesthetic application, CTT was measured with an esthesiometer, and IOP was measured by applanation tonometry. RESULTS-Combining data from all eyes, mean +/- SD PRT values before and after topical anesthetic administration were 21.26 +/- 4.19 mm/15 s and 22.47 +/- 3.31 mm/15 s, respectively, and mean IOP was 18.27 +/- 4.55 mm Hg. Median STT values before and after topical anesthetic administration were 3 mm/min (range, 0 to 12 mm/min) and 4 mm/min (range, 0 to 11 mm/min), respectively, and median CTT was 2.0 cm (range, 0.5 to 3.0 cm). Values did not differ between eyes for any test, but significant differences were identified for PRT values between males and females and between values obtained before and after topical anesthetic administration. Common bacterial isolates included Corynebacterium spp, Streptococcus spp, and Staphylococcus spp. Cytologic examination of conjunctival swab specimens revealed mainly basal epithelial cells; lymphocytes were common. CONCLUSIONS AND CLINICAL RELEVANCE-Results provided information on values for PRT, STT, CTT, and IOP in healthy guinea pigs and on expected findings for aerobic bacterial culture and cytologic examination of conjunctival swab specimens.
BackgroundInflammatory airway disease (IAD) in horses is a widespread, performance‐limiting syndrome believed to develop in response to inhaled irritants in the barn environment.ObjectivesTo evaluate changes in bronchoalveolar lavage fluid (BALF) cytology and exposure to particulates, endotoxin, and ammonia during horses' first month in training.AnimalsForty‐nine client‐owned 12‐ to 36‐month‐old Thoroughbred horses entering race training.MethodsIn this prospective cohort study, a convenience sample of horses was assigned to be fed hay from a net (n = 16), whereas the remaining horses were fed hay from the ground (n = 33). BALF was collected at enrollment and after 14 and 28 days in training. Respirable particulate, inhalable particulate, respirable endotoxin, and ammonia concentrations were measured at the breathing zone of each horse weekly.ResultsMedian respirable particulates were significantly higher when horses were fed from hay nets than when fed hay from the ground (hay net 0.28 mg/m3, no hay net 0.055 mg/m3, P < .001). Likewise, inhalable particulate (hay net 8.3 mg/m3, no hay net 3.3 mg/m3, P = .0064) and respirable endotoxin (hay net 173.4 EU/m3, no hay net 59.2 EU/m3, P = .018) exposures were significantly higher when horses were fed from hay nets. Feeding hay from a net resulted in significantly higher BALF eosinophil proportions over time (P < .001). BALF eosinophils were significantly related to respirable particulate exposure (14 days in training r s = 0.37, P = .012, 28 days in training, r s = 0.38, P = .017).Conclusions and Clinical ImportancePulmonary eosinophilic inflammation develops in response to respirable particulate exposure in young Thoroughbreds, indicating a potential hypersensitivity to inhaled particulate allergens.
The objective of this study was to determine reference intervals for plasma protein fractions of normal appearing, wild Atlantic loggerhead sea turtles, Caretta caretta. Blood was collected into heparinized vacutainer tubes from the following groups of turtles: 1) ten adult males; 2) eleven adult females; 3) ten juvenile males; and 4) ten juvenile females. Plasma was removed and total protein content of each sample was determined using the biuret method. Plasma proteins were separated using gel electrophoresis and scanned using a laser densitometer. Reference ranges for albumin, alpha, beta, and gamma globulins were established for age and gender classes and statistically analyzed. Significant differences were found between beta globulins of adult and juveniles and between juvenile males and females. A subgroup of turtles had electrophoretograms with beta-gamma bridging and a single adult male loggerhead had a prealbumin fraction; however, these subgroups of turtles were excluded from statistical analysis.
Based on the results of this study, whole blood samples anticoagulated with lithium heparin or EDTA should be evaluated within 12 hours (macaws) or 24 hours (pythons) of collection and stored at 4 degrees C for best results. Citrate should be avoided as it may result in increased cell lysis. The addition of albumin does not prevent cell lysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.