Drug resistance leads to chemotherapy failure and is responsible for the death of a great majority of patients with metastatic, late-stage ovarian cancer. The present study addressed whether changes in the chemotherapy dosing schedule affect the development, further worsening, or circumvention of drug resistance in chemosensitive and chemoresistant ovarian cancer. Severe combined immunodeficient mice bearing HeyA8 and HeyA8-MDR xenografts were treated with docetaxel intermittently (1Â/wk or 3Â/wk) or continuously for 21 days. Tumor mRNA expression of genes implicated in docetaxel resistance was measured by quantitative real-time-PCR. Analyzed genes included those encoding for the drug efflux transporters mdr1 and mrp7 and for molecules that interfere with or overcome the effects of docetaxel, including b-tubulinIII, actinin4, stathmin1, bcl2, rpn2, thoredoxin, and akt2. In both models, continuous docetaxel resulted in greater antitumor efficacy than 1Â/wk or 3Â/wk dosing and did not induce upregulation of any analyzed genes. Once weekly dosing caused upregulation of various drug resistance-related genes, especially in chemoresistant xenografts. More frequent, 3Â/wk dosing diminished this effect, although levels of various genes were higher than for continuous chemotherapy. Drug efflux transporter expression was further examined by Western blotting, confirming that intermittent, but not continuous, docetaxel induced significant upregulation. Overall, our results show that the presence and length of treatment-free intervals contribute to the development of drug resistance. Elimination of these intervals by continuous dosing resulted in superior antitumor efficacy and prevented drug resistance induction in chemosensitive and chemoresistant disease. These results encourage the clinical implementation of continuous chemotherapy to overcome and/or prevent drug resistance in newly diagnosed and recurrent, refractory ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.