Longitudinal bone growth occurs at the growth plate by endochondral ossification. Within the growth plate, chondrocyte proliferation, hypertrophy, and cartilage matrix secretion result in chondrogenesis. The newly formed cartilage is invaded by blood vessels and bone cells that remodel the newly formed cartilage into bone tissue. This process of longitudinal bone growth is governed by a complex network of endocrine signals, including growth hormone, insulin-like growth factor I, glucocorticoid, thyroid hormone, estrogen, androgen, vitamin D, and leptin. Many of these signals regulate growth plate function, both by acting locally on growth plate chondrocytes and also indirectly by modulating other endocrine signals in the network. Some of the local effects of hormones are mediated by changes in paracrine factors that control chondrocyte proliferation and differentiation. Many human skeletal growth disorders are caused by abnormalities in the endocrine regulation of the growth plate. This review provides an overview of the endocrine signals that regulate longitudinal bone growth, their interactions, and the mechanisms by which they affect growth plate chondrogenesis.
Context Primary adrenal insufficiency is an important clinical manifestation of X-linked adrenoleukodystrophy (ALD). Other manifestations include spinal cord disease and/or inflammatory demyelinating cerebral disease. Implementation of newborn screening requires natural history data to develop follow-up recommendations. Objective To delineate the natural history of adrenal insufficiency in male patients with ALD and to assess associations between the risk for developing adrenal insufficiency, spinal cord disease, or cerebral disease and plasma C26:0/C22:0 and C24:0/C22:0 ratios, which are diagnostic biomarkers for ALD. Design Retrospective review of medical records. Setting Two international tertiary referral centers of expertise for ALD. Patients Male patients with ALD followed at the centers between 2002 and 2016. Main Outcome Measures The primary endpoint was adrenal insufficiency; secondary endpoints were spinal cord and cerebral disease. Results Data on 159 male patients was available. The probability of developing adrenal insufficiency was described with survival analysis. Median time until adrenal insufficiency was 14 years (95% CI, 9.70 to 18.30 years). The cumulative proportion of patients who developed adrenal insufficiency was age-dependent and highest in early childhood [0 to 10 years, 46.8% (SEM 0.041%); 11 to 40 years, 28.6% (SEM, 0.037%); >40 years, 5.6% (SEM, 0.038%)]. No association between clinical manifestations and plasma ratios was detected with Cox model or Spearman correlation. Conclusions Lifetime prevalence of adrenal insufficiency in male patients with ALD is ~80%. Adrenal insufficiency risk is time-dependent and warrants age-dependent follow-up. Besides on-demand testing if symptoms manifest, we suggest a minimum of adrenal testing every 4 to 6 months for patients age ≤10 years, annual testing for those age 11 to 40 years, and solely on-demand testing for those age >40 years.
The vitamin D receptor is expressed in multiple cells of the body (other than osteoblasts), including beta cells and cells involved in immune modulation (such as mononuclear cells, and activated T and B lymphocytes), and most organs in the body including the brain, heart, skin, gonads, prostate, breast, and gut. Consequently, the extra-skeletal impact of vitamin D deficiency has been an active area of research. While epidemiological and case-control studies have often suggested a link between vitamin D deficiency and conditions such as type 1 and type 2 diabetes, connective tissue disorders, inflammatory bowel disorders, chronic hepatitis, food allergies, asthma and respiratory infections, and cancer, interventional studies for the most part have failed to confirm a causative link. This review examines available evidence to date for the extra-skeletal effects of vitamin D deficiency, with a focus on randomized controlled trials and meta-analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.