Exposure to stressful events early in life may have permanent deleterious consequences on nervous system function and increase the susceptibility to psychiatric conditions later in life. Maternal deprivation, commonly used as a source of neonatal stress, impairs memory in adult rats and reduces hippocampal brain-derived neurotrophic factor (BDNF) levels. Inflammatory cytokines, such as interleukins (IL) and tumor necrosis factor-α (TNF-α) have been shown to be increased in the peripheral blood of patients with psychiatric disorders. The aim of the present study was to investigate the effects of maternal separation on the levels of IL-10 and TNF-α, and BDNF in the hippocampus and prefrontal cortex of adult rats. We also evaluated the potential ameliorating properties of topiramate and valproic acid on memory deficits and cytokine and BDNF changes associated with maternal deprivation. The results indicated that, in addition to inducing memory deficits, maternal deprivation increased the levels of IL-10 in the hippocampus, and TNF-α in the hippocampus and in the cortex, and decreased hippocampal levels of BDNF, in adult life. Neither valproic acid nor topiramate were able to ameliorate memory deficits or the reduction in BDNF induced by maternal separation. The highest dose of topiramate was able to reduce IL-10 in the hippocampus and TNF-α in the prefrontal cortex, while valproate only reduced IL-10 levels in the hippocampus. These findings may have implications for a better understanding of the mechanisms associated with alterations observed in adult life induced by early stressful events, and for the proposal of novel therapeutic strategies.
It has been demonstrated that experiences taking place early in life have a profound influence on brain development, interacting with the genetic background and determining differences in the vulnerability to the onset of bipolar disorder when the individual is exposed to a second adverse event later in life. Here, we investigated the effects of exposure to an early adverse life event (maternal deprivation) and to a later adverse life event [D-amphetamine (AMPH)] on cognition in an animal model of mania. We have previously demonstrated that that repeated AMPH exposure produces severe and persistent cognitive impairment, which was more pronounced when the animals were maternal deprived, suggesting that the early adverse life event could be potentiating the effects of the exposure to the second adverse life event later in life. Here, we show that valproic acid ameliorated the cognitive deficits induced by AMPH, but it was not effective when the animals were exposed to both stressors: maternal deprivation and AMPH treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.