Emerging evidence suggests transcranial direct current stimulation (tDCS) can improve cognitive performance in older adults. Similarly, music listening may improve arousal and stimulate subsequent performance on memory-related tasks. We examined the synergistic effects of tDCS paired with music listening on auditory neurobehavioral measures to investigate causal evidence of short-term plasticity in speech processing among older adults. In a randomized sham-controlled crossover study, we measured how combined anodal tDCS over dorsolateral prefrontal cortex (DLPFC) paired with listening to autobiographically salient music alters neural speech processing in older adults compared to either music listening (sham stimulation) or tDCS alone. EEG assays included both frequency-following responses (FFRs) and auditory event-related potentials (ERPs) to trace neuromodulation-related changes at brainstem and cortical levels. Relative to music without tDCS (sham), we found tDCS alone (without music) modulates the early cortical neural encoding of speech in the time frame of ∼100–150 ms. Whereas tDCS by itself appeared to largely produce suppressive effects (i.e., reducing ERP amplitude), concurrent music with tDCS restored responses to those of the music+sham levels. However, the interpretation of this effect is somewhat ambiguous as this neural modulation could be attributable to a true effect of tDCS or presence/absence music. Still, the combined benefit of tDCS+music (above tDCS alone) was correlated with listeners’ education level suggesting the benefit of neurostimulation paired with music might depend on listener demographics. tDCS changes in speech-FFRs were not observed with DLPFC stimulation. Improvements in working memory pre to post session were also associated with better speech-in-noise listening skills. Our findings provide new causal evidence that combined tDCS+music relative to tDCS-alone (i) modulates the early (100–150 ms) cortical encoding of speech and (ii) improves working memory, a cognitive skill which may indirectly bolster noise-degraded speech perception in older listeners.
So-called duplex speech stimuli with perceptually ambiguous spectral cues to one ear and isolated low- versus high-frequency third formant “chirp” to the opposite ear yield a coherent percept supporting their phonetic categorization. Critically, such dichotic sounds are only perceived categorically upon binaural integration. Here, we used frequency-following responses (FFRs), scalp-recorded potentials reflecting phase-locked subcortical activity, to investigate brainstem responses to fused speech percepts and to determine whether FFRs reflect binaurally integrated category-level representations. We recorded FFRs to diotic and dichotic stop-consonants (/da/, /ga/) that either did or did not require binaural fusion to properly label along with perceptually ambiguous sounds without clear phonetic identity. Behaviorally, listeners showed clear categorization of dichotic speech tokens confirming they were heard with a fused, phonetic percept. Neurally, we found FFRs were stronger for categorically perceived speech relative to category-ambiguous tokens but also differentiated phonetic categories for both diotically and dichotically presented speech sounds. Correlations between neural and behavioral data further showed FFR latency predicted the degree to which listeners labeled tokens as “da” versus “ga.” The presence of binaurally integrated, category-level information in FFRs suggests human brainstem processing reflects a surprisingly abstract level of the speech code typically circumscribed to much later cortical processing.
So-called duplex speech stimuli with perceptually ambiguous spectral cues to one ear and isolated low- vs. high-frequency third formant "chirp" to the opposite ear yield a coherent percept supporting their phonetic categorization. Critically, such dichotic sounds are only perceived categorically upon binaural integration. Here, we used frequency-following responses (FFRs), scalp-recorded potentials reflecting phase-locked subcortical activity, to investigate brainstem responses to fused speech percepts and to determine whether FFRs reflect binaurally integrated category-level representations. We recorded FFRs to diotic and dichotic stop-consonants (/da/, /ga/) that either did or did not require binaural fusion to properly label along with perceptually ambiguous sounds without clear phonetic identity. Behaviorally, listeners showed clear categorization of dichotic speech tokens confirming they were heard with a fused, phonetic percept. Neurally, we found FFRs were stronger for categorically perceived speech relative to category-ambiguous tokens but also differentiated phonetic categories for both diotically and dichotically presented speech sounds. Correlations between neural and behavioral data further showed FFR latency predicted the degree to which listeners labeled tokens as "da" vs. "ga". The presence of binaurally integrated, category-level information in FFRs suggests human brainstem processing reflects a surprisingly abstract level of the speech code typically circumscribed to much later cortical processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.