Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system’s response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages’ contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
AMPs are small oligopeptides acting as integral elements of the innate immune system and are of tremendous potential in the medical field owing to their antimicrobial and immunomodulatory activities. They offer a multitude of immunomodulatory properties such as immune cell differentiation, inflammatory responses, cytokine production, and chemoattraction. Aberrancy in neutrophil or epithelial cell-producing AMPs leads to inflammation culminating in various autoimmune responses. In this review, we have tried to explore the role of prominent mammalian AMPs—defensins and cathelicidins, as immune regulators with special emphasis on their role in neutrophil extracellular traps which promotes autoimmune disorders. When complexed with self-DNA or self-RNA, AMPs act as autoantigens which activate plasmacytoid dendritic cells and myeloid dendritic cells leading to the production of interferons and cytokines. These trigger a series of self-directed inflammatory reactions, leading to the emergence of diverse autoimmune disorders. Since AMPs show both anti- and pro-inflammatory abilities in different ADs, there is a dire need for a complete understanding of their role before developing AMP-based therapy for autoimmune disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.