Let G = (V (G), E(G)) be a simple graph and let α ∈ (0, 1]. A set S ⊆ V (G) isan α-partial dominating set in G if |N[S]| ≥ α |V (G)|. The smallest cardinality of an α-partialdominating set in G is called the α-partial domination number of G, denoted by ∂α(G). An α-partial dominating set S ⊆ V (G) is a total α-partial dominating set in G if every vertex in S isadjacent to some vertex in S. The total α-partial domination number of G, denoted by ∂T α(G), isthe smallest cardinality of a total α-partial dominating set in G. In this paper, we characterize thetotal partial dominating sets in the join, corona, lexicographic and Cartesian products of graphsand determine the exact values or sharp bounds of the corresponding total partial dominationnumber of these graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.