The coronavirus outbreak is the most notable world crisis since the Second World War. The pandemic that originated from Wuhan, China in late 2019 has affected all the nations of the world and triggered a global economic crisis whose impact will be felt for years to come. This necessitates the need to monitor and predict COVID-19 prevalence for adequate control. The linear regression models are prominent tools in predicting the impact of certain factors on COVID-19 outbreak and taking the necessary measures to respond to this crisis. The data was extracted from the NCDC website and spanned from March 31, 2020 to May 29, 2020. In this study, we adopted the ordinary least squares estimator to measure the impact of travelling history and contacts on the spread of COVID-19 in Nigeria and made a prediction. The model was conducted before and after travel restriction was enforced by the Federal government of Nigeria. The fitted model fitted well to the dataset and was free of any violation based on the diagnostic checks conducted. The results show that the government made a right decision in enforcing travelling restriction because we observed that travelling history and contacts made increases the chances of people being infected with COVID-19 by 85% and 88% respectively. This prediction of COVID-19 shows that the government should ensure that most travelling agency should have better precautions and preparations in place before re-opening.
The world at large has been confronted with several disease outbreak which has posed and still posing a serious menace to public health globally. Recently, COVID-19 a new kind of coronavirus emerge from Wuhan city in China and was declared a pandemic by the World Health Organization. There has been a reported case of about 8622985 with global death of 457,355 as of 15.05 GMT, June 19, 2020. South-Africa, Egypt, Nigeria and Ghana are the most affected African countries with this outbreak. Thus, there is a need to monitor and predict COVID-19 prevalence in this region for effective control and management. Different statistical tools and time series model such as the linear regression model and autoregressive integrated moving average (ARIMA) models have been applied for disease prevalence/incidence prediction in different diseases outbreak. However, in this study, we adopted the ARIMA model to forecast the trend of COVID-19 prevalence in the aforementioned African countries. The datasets examined in this analysis spanned from February 21, 2020, to June 16, 2020, and was extracted from the World Health Organization website. ARIMA models with minimum Akaike information criterion correction (AICc) and statistically significant parameters were selected as the best models. Accordingly, the ARIMA (0,2,3), ARIMA (0,1,1), ARIMA (3,1,0) and ARIMA (0,1,2) models were chosen as the best models for SA, Nigeria, and Ghana and Egypt, respectively. Forecasting was made based on the best models. It is noteworthy to claim that the ARIMA models are appropriate for predicting the prevalence of COVID-19. We noticed a form of exponential growth in the trend of this virus in Africa in the days to come. Thus, the government and health authorities should pay attention to the pattern of COVID-19 in Africa. Necessary plans and precautions should be put in place to curb this pandemic in Africa.
Background The world is presently facing the challenges posed by COVID-19 (2019-nCoV), especially in the public health sector, and these challenges are dangerous to both health and life. The disease results in an acute respiratory infection that may result in pain and death. In Pakistan, the disease curve shows a vertical trend by almost 256K established cases of the diseases and 6035 documented death cases till August 5, 2020. Objective The primary purpose of this study is to provide the statistical model to predict the trend of COVID-19 death cases in Pakistan. The age and gender of COVID-19 victims were represented using a descriptive study. Method ology: Three regression models, which include Linear, logarithmic, and quadratic, were employed in this study for the modelling of COVID-19 death cases in Pakistan. These three models were compared based on R 2 , Adjusted R 2 , AIC, and BIC criterions. The data utilized for the modelling was obtained from the National Institute of Health of Pakistan from February 26, 2020 to August 5, 2020. Conclusion The finding deduced after the prediction modelling is that the rate of mortality would decrease by the end of October. The total number of deaths will reach its maximum point; then, it will gradually decrease. This indicates that the curve of total deaths will continue to be flat, i.e., it will shift to be constant, which is also the upper bound of the underlying function of absolute death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.