Experimental research has recognized the importance of cardiac fibroblast and myofibroblast cells in heart repair and function. In a normal healthy heart, the cardiac fibroblast plays a central role in the structural, electrical, and chemical aspects within the heart. Interestingly, the transformation of cardiac fibroblast cells to cardiac myofibroblast cells is suspected to play a vital part in the development of heart failure. The ability to differentiate between the two cells types has been a challenge. Myofibroblast cells are only expressed in the stressed or failing heart, so a better understanding of cell function may identify therapies that aid repair of the damaged heart. This paper will provide an outline of what is currently known about cardiac fibroblasts and myofibroblasts, the physiological and pathological roles within the heart, and causes for the transition of fibroblasts into myoblasts. We also reviewed the potential markers available for characterizing these cells and found that there is no single-cell specific marker that delineates fibroblast or myofibroblast cells. To characterize the cells of fibroblast origin, vimentin is commonly used. Cardiac fibroblasts can be identified using discoidin domain receptor 2 (DDR2) while α-smooth muscle actin is used to distinguish myofibroblasts. A known cytokine TGF-β is well established to cause the transformation of cardiac fibroblasts to myofibroblasts. This review will also discuss clinical treatments that inhibit or reduce the actions of TGF-β and its contribution to cardiac fibrosis and heart failure.
Nitric oxide (NO) is essential for normal function of the cardiovascular system. This study has determined whether chronic administration of l-arginine, the biological precursor of NO, attenuates the development of structural and functional changes in hearts and blood vessels of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Uninephrectomized rats treated with DOCA (25 mg every 4th day sc) and 1% NaCl in the drinking water for 4 wk were treated with l-arginine (5% in food, 3.4 ± 0.3 g·kg body wt−1·day−1). Changes in cardiovascular structure and function were determined by echocardiography, microelectrode studies, histology, and studies in isolated hearts and thoracic aortic rings. DOCA-salt hypertensive rats developed hypertension, left ventricular hypertrophy with increased left ventricular wall thickness and decreased ventricular internal diameter, increased inflammatory cell infiltration, increased ventricular interstitial and perivascular collagen deposition, increased passive diastolic stiffness, prolonged action potential duration, increased oxidative stress, and inability to increase purine efflux in response to an increased workload. l-Arginine markedly attenuated or prevented these changes and also normalized the reduced efficacy of norepinephrine and acetylcholine in isolated thoracic aortic rings of DOCA-salt hypertensive rats. This study suggests that a functional NO deficit in blood vessels and heart due to decreased NO synthase activity or increased release of reactive oxygen species such as superoxide may be a key change initiating many aspects of the cardiovascular impairment observed in DOCA-salt hypertensive rats. These changes can be prevented or attenuated by administration of l-arginine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.