1. During unilateral leg movements performed while standing, it is necessary to displace the center of gravity toward the other leg to maintain equilibrium. In addition, the orientation of particular segments, such as the head and trunk, which are used as reference values for organizing the motor act, needs to be preserved. The aim of the present study was to investigate the coordination between movement, equilibrium, and local posture. 2. Experiments were carried out on standing subjects who were instructed to raise one leg laterally to an angle of 45 degrees in response to a light. Two sources of light placed in front of the subject indicated the side on which the movement was to be performed. Three main aspects of the posturokinetic sequence were investigated in two populations, naive subjects and dancers: 1) The body weight transfer toward the supporting leg was found to have two components: first, a "ballistic" one, initiated by a thrust exerted by the moving leg; and second, an "adjustment" component during which the displacement of the center of gravity (CG) reaches a final position (steady state). An early burst in the gastrocnemius medialis of the moving leg often precedes the onset of the center of pressure change. Two differences between naive subjects and dancers were observed: first, the new CG position was almost reached in one step very near to the end of the ballistic component and required only a short adjustment in dancers, whereas in naive subjects it was reached in two steps, including a much longer adjustment component. Second, the dancers were able to minimize the CG displacement toward the supporting side; this might be because they form a better internal representation of the biomechanical limits of stability because of their long training. 2) The onset of the lateral displacement of the malleolus marker of the moving leg always occurred when the body weight had almost completed its transfer to above the support foot. This shows that the positioning of the CG in a new position compatible with equilibrium maintenance was a prerequisite for the leg movement to be performed. The relative timing of events during the posturokinetic sequence was fairly fixed in the dancers, whereas it varied from one trial to another in the naive subjects. 3) The coordination between movement, equilibrium, and head-trunk orientation involves two control strategies. An "inclination" strategy was used by the naive subjects; this consisted of an external rotation of the supporting leg around the anteroposterior ankle joint axis. A counter-rotation at the neck level ensured the stability of the interorbital line in the horizontal plane.(ABSTRACT TRUNCATED AT 400 WORDS)
The primary purpose of this paper was to compare the effect of reversing the direction of step initiation in Parkinson's disease. Forward (FDS) and backward (BDS) oriented stepping initiation analyses were conducted on combined kinematic and kinetic data recorded on Parkinsonian patients (PD) and healthy age-matched subjects. N o successive phases were examined: a postural phase from T1 (onset of the center of pressure [CP] displacement) to T2 (onset of the malleolus displacement), which was followed by a stepping phase from T2 to T3 (end of the malleolus displacement; i.e., the end of the step). In healthy subjects, the duration of the postural phase remained unchanged regardless of the direction in which the step was initiated. The stepping phase duration and the first step length were reduced in BDS in comparison with FDS. In both tasks, the absolute value of the horizontal force in sagittal plane (Fx) remained unchanged. The maximal velocity of the iliac crest marker (estimated whole body center of gravity [CG]) in the sagittal plane (V, , CG) remained within the same range regardless of direction of stepping. In Parkinsonian patients, the duration of the postural phase was markedly prolonged in both tasks in comparison with healthy subjects. The mean duration of stepping phase was approximately the same as in normal subjects, but the first step length was considerably reduced, as were horizontal force (Fx) and V, , CG. This impairment, which was due to a decrease in the propulsive forces, was significantly more pronounced in BDS that in FDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.