In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D conebeam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
• FPCT shoulder arthrography is feasible with fluoroscopy and CT in one workflow. • A 5-s FPCT protocol applies a lower radiation dose than MDCT. • A 20-s FPCT protocol is moderately sensitive for cartilage and tendon pathology.
Flat detectors (FD) have completely replaced image intensifiers in angiography. Due to this development not only the image quality of 2D digital subtraction angiography series (2-D-DSA) could be improved but also the acquisition of computed tomography (CT)-like cross-sectional images (FD-CT) within the angio suite became feasible. These techniques are now being used in daily clinical routine. Only little information about effective doses of these applications to patients has been published in the literature. We describe the effective patient dose of current applications in the field of angiography and demonstrate strategies to minimize the dose to the patient. In addition, we compare FD-CT applications to standard multislice CT applications.
An add-on unit was developed that allows the cleaning of scanning tunneling microscope tips by electron beam annealing even if they cannot be disconnected from the piezo scanner in situ. The whole scanner tip combination, which is attached to a linear motion stage, is subjected to a pulsed annealing treatment. The heat impact is focused on the outermost tip by sticking the tip through a hole in a grounded Mo screening plate with the cathode mounted on the opposite side. Tungsten tips attached to the scanner of the Omicron ultrahigh vacuum Multiscan Lab were annealed to achieve atomic resolution of ultrahigh vacuum cleaved GaAs (110) faces. A highly doped superlattice package grown on semi-insulating GaAs was also able to be investigated on the cleaved (110) face due to the ability of exact tip positioning with a scanning electron microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.