In the rat lumbar spinal cord the major supraspinal targets for lamina I projection neurons are the caudal ventrolateral medulla (CVLM), lateral parabrachial area (LPb) and periaqueductal grey matter (PAG). In this study we have estimated the number of lamina I neurons retrogradely labelled from each of these sites in the L4 segment, as well as the proportion that can be labelled by injecting different tracers into two separate sites. Our results suggest that this segment contains approximately 400 lamina I projection neurons on each side, and that approximately 85% of these can be labelled from either the CVLM or the LPb on the contralateral side. Around 120 lamina I cells in L4 project to the PAG, and over 90% of these cells can also be labelled from the CVLM or LPb. Most lamina I neurons projecting to CVLM or LPb are located in the contralateral dorsal horn, but in each case some cells were found to have bilateral projections. We also examined horizontal sections to investigate morphology and the expression of the neurokinin 1 (NK1) receptor in cells labelled from CVLM, LPb or PAG. There were no consistent morphological differences between these groups, however, while cells with strong or moderate NK1 receptor-immunostaining were labelled from LPb or CVLM, they seldom projected to the PAG. These results suggest that many lamina I cells project to more than one site in the brain and that those projecting to PAG may represent a distinct subclass of lamina I projection neuron.
To determine whether GABA and glycine can act as cotransmitters at synapses in the rat spinal cord, we have compared the ultrastructural distribution of GABAA-receptor beta 3 subunit with that of the glycine receptor-associated protein gephyrin and combined this with postembedding detection of GABA and glycine. We also used a dual-immunofluorescence method to confirm that gephyrin was associated with the glycine-receptor alpha 1 subunit throughout the cord. GABAA beta 3-subunit immunoreactivity was restricted primarily to synapses, and at a majority of these synapses the presynaptic axon was GABA-immunoreactive. Many synapses showed both GABAA beta 3 and gephyrin immunoreactivity, and at most of these synapses GABA and glycine were enriched in the presynaptic axon. These results strongly support the idea that cotransmission by GABA and glycine occurs in the spinal cord.
Lamina I of the spinal cord is densely innervated by nociceptive primary afferents, many of which contain substance P. It contains numerous projection neurons: the majority of these respond to noxious stimuli, however some are activated by cooling. In the rat, approximately 80% of the projection neurons express the neurokinin 1 (NK1) receptor, on which substance P acts, and most cells with this receptor are activated by noxious stimuli. Lamina I neurons can be classified morphologically into pyramidal, multipolar, and fusiform types. It has been reported in the cat that pyramidal neurons are activated only by cooling and that in monkey relatively few pyramidal cells are NK1 receptor-immunoreactive. We have used immunocytochemistry to examine the innervation of lamina I projection neurons in the rat by substance P-containing primary afferents and their responses to a noxious stimulus (subcutaneous formalin injection). NK1 receptor-immunoreactive projection cells received a significantly higher density of contacts from substance P-containing afferents than neurons that lacked the receptor. Most contacts on NK1 receptor-immunoreactive cells were associated with synapses. Formalin injection induced c-Fos in approximately 80% of projection neurons with the NK1 receptor and in 25-45% of those without it. More than 80% of pyramidal neurons expressed the receptor, and for both substance P innervation and c-Fos expression there were no significant differences among different morphological types of NK1 receptor-immunoreactive neuron. We conclude that presence or absence of the NK1 receptor is a better indicator of function than morphology for lamina I projection neurons in the rat.
Typical Rett syndrome (RTT) is a pediatric disorder caused by loss-of-function mutations in the MECP2 gene. The demonstrated reversibility of RTT-like phenotypes in mice suggests that MECP2 gene replacement is a potential therapeutic option in patients. We report improvements in survival and phenotypic severity in Mecp2-null male mice after neonatal intracranial delivery of a single-stranded (ss) AAV9/CBA-MECP2 vector. Median survival was 16.6 weeks for MECP2-treated versus 9.3 weeks for GFP-treated mice. ssAAV9/CBA-MECP2-treated mice also showed significant improvement in the phenotype severity score, in locomotor function and in exploratory activity, as well as a normalization of neuronal nuclear volume in transduced cells. Wild-type mice receiving neonatal injections of the same ssAAV9/CBA-MECP2 vector did not show any significant deficits, suggesting a tolerance for modest MeCP2 overexpression. To test a MECP2 gene replacement approach in a manner more relevant for human translation, a self-complementary AAV vector designed to drive MeCP2 expression from a fragment of the Mecp2 promoter was injected intravenously into juvenile (4-5 week-old) Mecp2-null mice. While the brain transduction efficiency in juvenile mice was low (~2-4% of neurons), modest improvements in survival were still observed. These results support the concept of MECP2 gene therapy for RTT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.