A novel population of 33D1(+) DCs was identified in normal mouse retina. The function of these cells remains to be defined, but increased numbers correlate positively with structural abnormalities in the RPE and increased resistance of the strain to EAU.
It is proposed that CCR2+ monocytes are specifically recruited to inflammatory sites, whereas CCR2− monocytes are recruited to normal tissue to become resident macrophages. Whether these subsets represent separate lineages, how differential trafficking is regulated and whether monocytes undergo further differentiation is uncertain. Using a mouse model of autoimmune uveoretinitis we examined monocyte trafficking to the inflamed retina in vivo. We show that bone marrow-derived CD11b+ F4/80− monocytes require 24 to 48 h within the circulation and lymphoid system before acquiring the CCR2+ phenotype and trafficking to the inflamed retina is enabled. This phenotype, and the capacity to traffic were lost by 72 h. Monocyte CCR2 expression followed a similar time course in normal mice indicating that differentiation to an inflammatory phenotype is a constitutive, time-limited property, independent of local inflammatory mediators. Phenotypic analysis of adoptively transferred cells indicated that circulating inflammatory monocytes also differentiate into CD11c+ and B220+ dendritic cells and F4/80+ tissue macrophages in vivo. Our data supports the hypothesis of continuous extravasation and progressive differentiation over time of inflammatory monocytes in the circulation rather than replication within the actively inflamed tissue, and supports the concept of myeloid dendritic cell differentiation from trafficking monocytes under physiological conditions in vivo.
Using noninvasive in vivo imaging and experimental autoimmune uveoretinitis as a model, we show for the first time that the mechanisms controlling blood monocyte recirculation through peripheral and lymphoid tissues alter during inflammation. The recirculation of monocytes in mice with ocular inflammation but not controls was found to depend on the selectin CD62-ligand (CD62L) and on CD44. Not only was rolling efficiency ablated or markedly reduced in antibody-treated mice, but most of the labeled monocytes also disappeared from the circulation within seconds, anti-CD44–treated monocytes homing to the lymph nodes and anti–CD62L-treated monocytes homing to the spleen. Our data indicate that, although PSGL-1 has a partial role in the transmigration of monocytes into the inflamed retina, CD62L has a key role in regulating recruitment of monocytes to lymphoid tissue from the blood during inflammation and that CD44 is required to maintain CD62L+ inflammatory monocytes within the circulation during inflammation. This effect was systemic, because sequestered monocytes accumulated in mesenteric as well as draining cervical lymph nodes, and inflammation dependent, because depletion of circulating blood monocytes was much reduced or absent in normal mice and accumulations of adoptively transferred monocytes in the lymphoid tissues did not occur.
PURPOSE.Although much is now understood about the molecular structure of tight junctions (TJs), little is known about the regulation of their function during neural inflammatory disease processes in vivo. The mechanisms by which leukocytes transmigrate the blood-retina barrier (BRB) without affecting endothelial permeability are controversial. METHODS. Confocal immunofluorescence microscopy of ex vivo retinal wholemounts was used to study BRB integrity during leukocyte adhesion and migration during experimental autoimmune uveoretinitis (EAU). Western blot analysis was used to measure levels of TJ proteins in EAU retina and RPE and in normal retina or RPE cultured with cytokines or chemokines. RESULTS. No evidence for discontinuity or other weakness of the endothelial or epithelial barrier at tricellular corners was observed, and maximum disruption of TJ protein expression was focused in retinal venules correlating with sites of leukocyte extravasation. Areas of maximum TJ protein loss in vivo also correlated with redistribution or loss of ensheathing astrocyte processes on venules but not adjacent capillaries or arterioles. Exposure of normal choroidal and retinal explants ex vivo to cytokines and chemokines alone did not downregulate total occludin-1 or claudin-3 TJ protein expression. CONCLUSIONS. The data presented herein support an active role for leukocytes in TJ disruption and blood-retina barrier (BRB) breakdown during retinal inflammation and further implicate venule microenvironment as a key factor in leukocyte recruitment to retinal tissue in vivo. (Invest Ophthalmol Vis Sci. 2005;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.