We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl 3 : CD 3 OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.
Simple cationic compounds containing O–H hydrogen bond donors bind anions very strongly in acetonitrile, and with moderate strength in 9 : 1 acetonitrile : water.
We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1:1 CDCl3:CD3OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semiempirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.
Hydroxypyridinium and hydroxyquinolinium compounds containing acidic O–H groups attached to a cationic aromatic scaffold were synthesized, i.e. N-methyl-3-hydroxypyridinium (1+) and N-methyl-8-hydroxyquinolinium (2+). These very simple compounds are capable of binding to chloride very strongly in CD3CN and with moderate strength in 9:1 CD3CN:D2O. Comparison with known association constants reveal that 1+ and 2+ bind chloride in CD3CN or CD3CN:D2O with comparable affinities to receptors containing significantly more hydrogen bond donors and/or higher positive charges. Crystal structures of both compounds with coordinating anions were obtained, and feature short O–H∙∙∙anion hydrogen bonds. A receptor containing two hydroxyquinolinium groups was also prepared. While the low solubility of this compound caused difficulties, we were able demonstrate chloride binding in a competitive 1:1 CD3CN:CD3OD solvent mixture. Addition of sulfate to this compound results in the formation of a crystallographically-characterised solid state anion coordination polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.