While flow is known to be a major driver of estuarine ecosystems, targeted flow manipulations are rare because tidal systems are extremely variable in space and time, and because the necessary infrastructure is rarely available. In summer 2018 we used a unique water control structure in the San Francisco Estuary (SFE) to direct a managed flow pulse into Suisun Marsh, one of the largest contiguous tidal marshes on the west coast of the United States. The action was designed to increase habitat suitability for the endangered Delta Smelt Hypomesus transpacificus, a small osmerid fish endemic to the upper SFE. The approach was to operate the Suisun Marsh Salinity Control Gates (SMSCG) in conjunction with increased Sacramento River tributary inflow to direct an estimated 160 x 10 6 m 3 pulse of low salinity water into Suisun Marsh during August, a critical time period for juvenile Delta Smelt rearing. Three-dimensional modeling showed that directing additional low salinity water into Suisun Marsh ("Flow Action") substantially increased the area of low salinity habitat for Delta Smelt that persisted beyond the period of SMSCG operations. Field monitoring showed that turbidity and chlorophyll were at higher levels in Suisun Marsh, representing better habitat conditions, than the upstream Sacramento River region throughout the study period. The Flow Action had no substantial effects on zooplankton abundance, nor did Suisun Marsh show enhanced levels of these prey species in comparison to the Sacramento River. Fish monitoring data suggested that small numbers of Delta Smelt colonized Suisun Marsh from the Sacramento River during the 2018 Flow Action. Comparison of the salinity effects of the Flow Action to historical catch data for Suisun Marsh further supported our hypothesis that the Flow Action would have some benefit for this rare species. Our study provides insight into both the potential use of targeted flow manipulations to support endangered fishes such as Delta Smelt, and into the general response of estuarine habitat to flow management.
Habitat characteristics mediate predator-prey coexistence in many ecological systems but are seldom considered in species introductions. When economically important introduced predators are stocked despite known negative impacts on native species, understanding the role of refuges, landscape configurations, and community interactions can inform habitat management plans. We measured these factors in basins with introduced trout (Salmonidae) and the Cascades frog (Rana cascadae) to determine, which are responsible for observed patterns of co-occurrence of this economically important predator and its native prey. Large, vegetated shallows were strongly correlated to co-occurrence, and R. cascadae larvae occur in shallower water when fish are present, presumably to escape predation. The number of nearby breeding sites of R. cascadae was also correlated to co-occurrence, but only when the western toad (Anaxyrus boreas) was present. Because A. boreas larvae are unpalatable to fish and resemble R. cascadae, they may provide protection from trout via Batesian mimicry. Although rescue-effect dispersal from nearby populations may maintain co-occurrence, within-lake factors proved more important for predicting co-occurrence. Learning which factors allow co-occurrence between economically important introduced species and their native prey enables managers to make better-informed stocking decisions.
Climate change is intensifying the effects of multiple interacting stressors on aquatic ecosystems, particularly in estuaries. In the San Francisco Estuary, signals of climate change are apparent in the long-term monitoring record. Here we synthesize current and potential future climate change effects on three main ecosystems (floodplain, tidal marsh, and open water) in the upper estuary and two representative native fishes that commonly occur in these ecosystems (anadromous Chinook Salmon, Oncorhynchus tshawytscha and estuarine resident Sacramento Splittail, Pogonichthys macrolepidotus). Based on our review, we found that the estuary is experiencing shifting baseline environmental conditions, amplification of extremes, and restructuring of physical habitats and biological communities. We present priority topics for research and monitoring, and a conceptual model of how the estuary currently functions in relation to climate variables. In addition, we discuss four tools for management of climate change effects: regulatory, water infrastructure, habitat development, and biological measures. We conclude that adapting to climate change requires fundamental changes in management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.