In Drosophila, disturbing the expression of the homeobox gene caudal causes a severe disruption in body segmentation and global body patterning. There are three mouse homologues of Drosophila caudal: Cdx1 (ref. 2), Cdx2 (ref. 3) and Cdx4 (ref. 4). We have generated a null mutation of murine Cdx2 by homologous recombination. Cdx2 homozygote null mutants die between 3.5 and 5.5 days post coitum (d.p.c.). Cdx2 heterozygote mutants exhibit a variable phenotype, with many showing tail abnormalities or stunted growth. Skeletal analysis demonstrates a homeotic shift of vertebrae and compatible malformations of the ribs. Within the first three months of life, 90% of Cdx2 heterozygotes develop multiple intestinal adenomatous polyps, particularly in the proximal colon. These polyps occasionally contain areas of true metaplasia. In contrast to the surrounding intestinal epithelium, the neoplastic cells do not express Cdx2 from the remaining allele. These results suggest that Cdx2 mutation is the primary event in the genesis of some intestinal tumours.
Three mouse homologues of the Drosophila homeotic gene Caudal (Cad) have been described. They are currently designated Cdx-1, Cdz-2, and Cdz-4. Cdx-1 and 2 are both strongly expressed in the adult mid-and hindgut, while Cdx-1 and 4 have been shown to be activated in the embryonic primitive streak. Using a polyclonal antibody against a fusion protein containing the amino terminal 109 amino acids of murine Cdx-2, we here describe the topographical location of the gene product from early cleavage to 12.5 days of embryonic development. Cdx-2 expression begins at 3.5 days and is confined to the trophectoderm, being absent from the inner cell mass. Subsequently, staining is located in the extra-embryonic ectoderm adjacent to the epiblast, but sparing the more superficially placed polar, as well as the mural trophoblastic cells. Continuing expression in the fetal membranes involves the chorion, the allantoic bud, and, at even later stages, the spongiotrophoblast. From 8.5 days, Cdx-2 begins to be expressed in embryonic tissues, principally (unlike Cdx-1) in the posterior part of the gut from its earliest formation, as well as in the tail bud and in the caudal part of the neural tube. Cdz-2 is, therefore, transcribed well before any other membrane of the Cad homologue group and of the related H a -C group; its expression in the extra-embryonic membranes and in the hindgut reflects the phylogenetic relationship between the cloaca and the chorio-allantois and suggests the possibility that homeobox genes may be involved in placental development andlor patterning. o 1995 Wiley-Liss, Inc.
Analysis of a series of deaths between 1986 and 2001 resulting from natural disease, accidents, suicides, and homicide, where postmortem animal activity had traumatized bodies, was undertaken at the Forensic Science Center in Adelaide to demonstrate the range of lesions that may occur and problems in interpretation that result. Tissue damage had been caused by a variety of animals, including fly larvae, ants, birds, dogs, rodents, sea lice, and sharks. Postmortem animal activity had disguised injuries, modified wounds, and created the appearances of inflicted injury. Problems with identification occurred after postmortem facial trauma, and loss of organ parenchyma had interfered with, or precluded, the precise determination of the manner of death in some cases. Specific kinds of tissue and organ damage may occur after death, necessitating careful assessment of lesions in a search for characteristic features of animal activity. The pattern of lesions may enable identification of the particular species of animal involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.