Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps.
The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO − ) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.intratumor heterogeneity | tumor growth | tumor life-history | intestinal adenomas | cancer stem cells
Background & Aims Tumors that develop in patients with Crohn's disease tend be multifocal, so field cancerization (the replacement of normal cells with non-dysplastic but tumorigenic clones) might contribute to intestinal carcinogenesis. We investigated patterns of tumor development from pretumor intestinal cell clones. Methods We performed genetic analyses of multiple areas of intestine from 10 patients with Crohn's disease and intestinal neoplasia. Two patients had multifocal neoplasia; longitudinal sections were collected from 3 patients. Individual crypts were microdissected and genotyped; clonal dependency analysis was used to determine the order and timing of mutations that led to tumor development. Results The same mutations in KRAS, CDKN2A(p16), and TP53 that were observed in neoplasias were also present in nontumor, nondysplastic, and dysplastic epithelium. In 2 patients, carcinogenic mutations were detected in nontumor epithelium 4 years before tumors developed. The same mutation (TP53 p.R248W) was detected at multiple sites along the entire length of the colon from 1 patient; it was the apparent founder mutation for synchronous tumors and multiple dysplas-tic areas. Disruption of TP53, CDKN2A, and KRAS were all seen as possible initial events in tumorigenesis; the sequence of mutations (the tumor development pathway) differed among lesions. Conclusions Pretumor clones can grow extensively in the intestinal epithelium of patients with Crohn's disease. Segmental resections for neoplasia in patients with Crohn's disease might therefore leave residual pretumor disease, and dysplasia might be an unreliable biomarker for cancer risk. Characterization of the behavior of pretumor clones might be used to predict the development of intestinal neoplasia.
ObjectiveBarrett's oesophagus shows appearances described as ‘intestinal metaplasia’, in structures called ‘crypts’ but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands.MethodsCell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry.ResultsProliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell.ConclusionsBarrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus.
This study demonstrates, through a combination of stringent screening methods and thorough validation, that it is possible to identify transmembrane proteins preferentially expressed in primary breast tumour cells. mRNA was extracted from tumour cells isolated from invasive breast cancers and it was then subtracted against normal breast tissue mRNA prior to the generation of a signal sequence-trap library. Screening of the library identified 31 positive clones encoding 12 cell-surface and 12 secreted proteins. The expression of a subset of transmembrane genes was then interrogated using a high-throughput method (tissue microarray) coupled with cutting-edge in situ techniques in a large cohort of patients who had undergone uniform adjuvant chemotherapy. Expression of CD98 heavy chain (CD98HC) and low-level expression of the insulin-like growth factor 2 receptor/mannose-6-phosphate receptor (IGF2R/M6PR) correlated with poor patient prognosis in the whole cohort. Expression of bradykinin receptor B1 (BDKRB1) and testis enhanced gene transcript (TEGT) correlated with good prognosis in woman with oestrogen receptor (ER)-negative breast tumours. These results indicate that this combined approach of isolating primary tumour cells, generating a library to specifically isolate signal-sequence-containing transcripts, and in situ hybridization on tissue microarrays successfully identified novel prognostic markers (BDKRB1, CD98hc, and TEGT) and potential transmembrane therapeutic targets (CD98hc) in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.