Gene-based therapy is the intentional modulation of gene expression in specific cells to treat pathological conditions. This modulation is accomplished by introducing exogenous nucleic acids such as DNA, mRNA, small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides. Given the large size and the negative charge of these macromolecules, their delivery is typically mediated by carriers or vectors. In this Review, we introduce the biological barriers to gene delivery in vivo and discuss recent advances in material sciences, nanotechnology and nucleic acid chemistry that have yielded promising non-viral delivery systems, some of which are currently undergoing testing in clinical trials. The diversity of these systems highlights the recent progress of gene-based therapy using non-viral approaches.
RNA interference (RNAi) has broad potential as a therapeutic to reversibly silence any gene. To achieve the clinical potential of RNAi, delivery materials are required to transport short interfering RNA (siRNA) to the site of action in the cells of target tissues. This Review provides an introduction to the biological challenges that siRNA delivery materials aim to overcome, as well as a discussion of the way that the most effective and clinically advanced classes of siRNA delivery systems, including lipid nanoparticles and siRNA conjugates, are designed to surmount these challenges. The systems that we discuss are diverse in their approaches to the delivery problem, and provide valuable insight to guide the design of future siRNA delivery materials.
RNA interference (RNAi)-based therapeutics have significant potential for the treatment of human disease. Safe and effective delivery of RNA to target tissues remains a major barrier to realizing its clinical potential. Several factors can affect the in vivo performance of short interfering RNA (siRNA) delivery formulations, including siRNA sequence, structure, chemical modification, and delivery formulation. This review provides an introduction to the principles underlying the pharmacokinetics and pharmacodynamics of systemically administered siRNA and its delivery formulations, including the factors that lead to its degradation, clearance, and tissue uptake, as well as its potential for immunogenicity, toxicity, and off-target effects within the body.
The functionality of natural biopolymers has inspired significant effort to develop sequence-defined synthetic polymers for applications including molecular recognition, self-assembly, and catalysis. Conjugation of synthetic materials to biomacromolecules has played an increasingly important role in drug delivery and biomaterials. Here we develop the controlled synthesis of novel oligomers from hydroxyproline-based building blocks and conjugate these materials to siRNA. Hydroxyproline-based monomers enable incorporation of broad structural diversity into defined polymer chains. Using a perfluorocarbon purification handle, we are able to purify diverse oligomers with a single solid phase extraction method. We show the efficiency of synthesis by building 14 unique trimers and 4 hexamers from 6 diverse building blocks. We adapt this method to parallel synthesis of hundreds of materials in 96-well plates. This strategy provides a platform for library screening of modified biomolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.