Expression quantitative trait loci (eQTL) studies illuminate the genetics of gene expression and, in disease research, can be particularly illuminating when using the tissues directly impacted by the condition. In nephrology, there is a paucity of eQTL studies of human kidney. Here, we used whole-genome sequencing (WGS) and microdissected glomerular (GLOM) and tubulointerstitial (TI) transcriptomes from 187 individuals with nephrotic syndrome (NS) to describe the eQTL landscape in these functionally distinct kidney structures. Using MatrixEQTL, we performed cis-eQTL analysis on GLOM (n = 136) and TI (n = 166). We used the Bayesian "Deterministic Approximation of Posteriors" (DAP) to fine-map these signals, eQTLBMA to discover GLOM- or TI-specific eQTLs, and single-cell RNA-seq data of control kidney tissue to identify the cell type specificity of significant eQTLs. We integrated eQTL data with an IgA Nephropathy (IgAN) GWAS to perform a transcriptome-wide association study (TWAS). We discovered 894 GLOM eQTLs and 1,767 TI eQTLs at FDR < 0.05. 14% and 19% of GLOM and TI eQTLs, respectively, had >1 independent signal associated with its expression. 12% and 26% of eQTLs were GLOM specific and TI specific, respectively. GLOM eQTLs were most significantly enriched in podocyte transcripts and TI eQTLs in proximal tubules. The IgAN TWAS identified significant GLOM and TI genes, primarily at the HLA region. In this study, we discovered GLOM and TI eQTLs, identified those that were tissue specific, deconvoluted them into cell-specific signals, and used them to characterize known GWAS alleles. These data are available for browsing and download via our eQTL browser, "nephQTL."
Steroid-sensitive nephrotic syndrome (SSNS) is a childhood disease with unclear pathophysiology and genetic architecture. We investigated the genomic basis of SSNS in children recruited in Europe and the biopsy-based North American NEPTUNE cohort. We performed three ancestry-matched, genome-wide association studies (GWAS) in 273 children with NS (Children Cohort Nephrosis and Virus [NEPHROVIR] cohort: 132 European, 56 African, and 85 Maghrebian) followed by independent replication in 112 European children, transethnic meta-analysis, and conditional analysis. GWAS alleles were used to perform glomerular -expression quantitative trait loci studies in 39 children in the NEPTUNE cohort and epidemiologic studies in GWAS and NEPTUNE (97 children) cohorts. Transethnic meta-analysis identified one SSNS-associated single-nucleotide polymorphism (SNP) rs1063348 in the 3' untranslated region of (=9.3×10). Conditional analysis identified two additional independent risk alleles upstream of (rs28366266,=3.7×10) and in the 3' untranslated region of (rs9348883,=9.4×10) within introns of and These three risk alleles were independent of the risk haplotype identified in European patients. Increased burden of risk alleles across independent loci was associated with higher odds of SSNS. Increased burden of risk alleles across independent loci was associated with higher odds of SSNS, with younger age of onset across all cohorts, and with increased odds of complete remission across histologies in NEPTUNE children. rs1063348 associated with decreased glomerular expression of HLA-DRB1, HLA-DRB5, and HLA-DQB1. Transethnic GWAS empowered discovery of three independent risk SNPs for pediatric SSNS. Characterization of these SNPs provide an entry for understanding immune dysregulation in NS and introducing a genomically defined classification.
Abstract:Expression quantitative trait loci (eQTL)
Recurrence of Clostridium difficile infection (CDI) places a major burden on the healthcare system. Previous studies have suggested that specific C. difficile strains, or ribotypes, are associated with severe disease and/or recurrence. However, in some patients a new strain is detected in subsequent infections, complicating longitudinal studies focused on strain differences that may contribute to disease outcome. We examined ribotype composition over time in patients who did or did not develop recurrence to examine infection with multiple C. difficile ribotypes (mixed infection), during the course of infection. Using a retrospective patient cohort, we isolated and ribotyped a median of 36 C. difficile colonies from 61 patients (105 total samples) at initial infection, recurrence (a second case of CDI within 15-56 days of initial infection), and reinfection (a second case of CDI after 56 days of initial infection). We observed mixed infection in 78.6% of samples at initial infection in patients who went on to develop recurrence compared to 18.1% of patients who did not, and mixed infection remained associated with subsequent recurrence after adjusting for gender and prior antibiotic exposure (OR 3.5, 95% CI 1.3-9.4, P = .015). In patients who were sampled longitudinally (44 consecutive events in 32 patients), the dominant ribotype changed in 31.8% of consecutive samples and the newly dominant ribotype was not detected in prior samples from that patient. Our results suggest that mixed C. difficile infection is more prevalent than previously demonstrated and potentially a marker of susceptibility to recurrence.
Clostridioides difficile infection (CDI) can result in severe disease and death, with no accurate models that allow for early prediction of adverse outcomes. To address this need, we sought to develop serum-based biomarker models to predict CDI outcomes. We prospectively collected sera ≤48 h after diagnosis of CDI in two cohorts. Biomarkers were measured with a custom multiplex bead array assay. Patients were classified using IDSA severity criteria and the development of disease-related complications (DRCs), which were defined as ICU admission, colectomy, and/or death attributed to CDI. Unadjusted and adjusted models were built using logistic and elastic net modeling. The best model for severity included procalcitonin (PCT) and hepatocyte growth factor (HGF) with an area (AUC) under the receiver operating characteristic (ROC) curve of 0.74 (95% confidence interval, 0.67 to 0.81). The best model for 30-day mortality included interleukin-8 (IL-8), PCT, CXCL-5, IP-10, and IL-2Rα with an AUC of 0.89 (0.84 to 0.95). The best model for DRCs included IL-8, procalcitonin, HGF, and IL-2Rα with an AUC of 0.84 (0.73 to 0.94). To validate our models, we employed experimental infection of mice with C. difficile. Antibiotic-treated mice were challenged with C. difficile and a similar panel of serum biomarkers was measured. Applying each model to the mouse cohort of severe and nonsevere CDI revealed AUCs of 0.59 (0.44 to 0.74), 0.96 (0.90 to 1.0), and 0.89 (0.81 to 0.97). In both human and murine CDI, models based on serum biomarkers predicted adverse CDI outcomes. Our results support the use of serum-based biomarker panels to inform Clostridioides difficile infection treatment. IMPORTANCE Each year in the United States, Clostridioides difficile causes nearly 500,000 gastrointestinal infections that range from mild diarrhea to severe colitis and death. The ability to identify patients at increased risk for severe disease or mortality at the time of diagnosis of C. difficile infection (CDI) would allow clinicians to effectively allocate disease modifying therapies. In this study, we developed models consisting of only a small number of serum biomarkers that are capable of predicting both 30-day all-cause mortality and adverse outcomes of patients at time of CDI diagnosis. We were able to validate these models through experimental mouse infection. This provides evidence that the biomarkers reflect the underlying pathophysiology and that our mouse model of CDI reflects the pathogenesis of human infection. Predictive models can not only assist clinicians in identifying patients at risk for severe CDI but also be utilized for targeted enrollment in clinical trials aimed at reduction of adverse outcomes from severe CDI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.