Parametric statistics are based on the assumption of normality. Recent findings suggest that Type I error and power can be adversely affected when data are non-normal. This paper aims to assess the distributional shape of real data by examining the values of the third and fourth central moments as a measurement of skewness and kurtosis in small samples. The analysis concerned 693 distributions with a sample size ranging from 10 to 30. Measures of cognitive ability and of other psychological variables were included. The results showed that skewness ranged between −2.49 and 2.33. The values of kurtosis ranged between −1.92 and 7.41. Considering skewness and kurtosis together the results indicated that only 5.5% of distributions were close to expected values under normality. Although extreme contamination does not seem to be very frequent, the findings are consistent with previous research suggesting that normality is not the rule with real data.
This study examines whether math anxiety and negative attitudes towards mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding mathematics, and their responses were assessed in relation to the grades they had obtained during continuous assessment on a course entitled "Research Design".Results showed that low performance on the course was related to math anxiety and negative attitudes towards mathematics. We suggest that these factors may affect students' performance and should therefore be taken into account in attempts to improve students' learning processes in methodological courses of this kind.
Inconsistencies in the research findings on F-test robustness to variance heterogeneity could be related to the lack of a standard criterion to assess robustness or to the different measures used to quantify heterogeneity. In the present paper we use Monte Carlo simulation to systematically examine the Type I error rate of F-test under heterogeneity. One-way, balanced, and unbalanced designs with monotonic patterns of variance were considered. Variance ratio (VR) was used as a measure of heterogeneity (1.5, 1.6, 1.7, 1.8, 2, 3, 5, and 9), the coefficient of sample size variation as a measure of inequality between group sizes (0.16, 0.33, and 0.50), and the correlation between variance and group size as an indicator of the pairing between them (1, .50, 0, -.50, and -1). Overall, the results suggest that in terms of Type I error a VR above 1.5 may be established as a rule of thumb for considering a potential threat to F-test robustness under heterogeneity with unequal sample sizes.
Statistical analysis is crucial for research and the choice of analytical technique should take into account the specific distribution of data. Although the data obtained from health, educational, and social sciences research are often not normally distributed, there are very few studies detailing which distributions are most likely to represent data in these disciplines. The aim of this systematic review was to determine the frequency of appearance of the most common non-normal distributions in the health, educational, and social sciences. The search was carried out in the Web of Science database, from which we retrieved the abstracts of papers published between 2010 and 2015. The selection was made on the basis of the title and the abstract, and was performed independently by two reviewers. The inter-rater reliability for article selection was high (Cohen’s kappa = 0.84), and agreement regarding the type of distribution reached 96.5%. A total of 262 abstracts were included in the final review. The distribution of the response variable was reported in 231 of these abstracts, while in the remaining 31 it was merely stated that the distribution was non-normal. In terms of their frequency of appearance, the most-common non-normal distributions can be ranked in descending order as follows: gamma, negative binomial, multinomial, binomial, lognormal, and exponential. In addition to identifying the distributions most commonly used in empirical studies these results will help researchers to decide which distributions should be included in simulation studies examining statistical procedures.
This paper analyzes current practices in psychology in the use of research methods and data analysis procedures (DAP) and aims to determine whether researchers are now using more sophisticated and advanced DAP than were employed previously. We reviewed empirical research published recently in prominent journals from the USA and Europe corresponding to the main psychological categories of Journal Citation Reports and examined research methods, number of studies, number and type of DAP, and statistical package. The 288 papers reviewed used 663 different DAP. Experimental and correlational studies were the most prevalent, depending on the specific field of psychology. Two-thirds of the papers reported a single study, although those in journals with an experimental focus typically described more. The papers mainly used parametric tests for comparison and statistical techniques for analyzing relationships among variables. Regarding the former, the most frequently used procedure was ANOVA, with mixed factorial ANOVA being the most prevalent. A decline in the use of non-parametric analysis was observed in relation to previous research. Relationships among variables were most commonly examined using regression models, with hierarchical regression and mediation analysis being the most prevalent procedures. There was also a decline in the use of stepwise regression and an increase in the use of structural equation modeling, confirmatory factor analysis, and hierarchical linear modeling. Overall, the results show that recent empirical studies published in journals belonging to the main areas of psychology are employing more varied and advanced statistical techniques of greater computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.