Antibiotic resistant strains of Acinetobacter baumannii are responsible for a large and increasing burden of nosocomial infections in Thailand and other countries of Southeast Asia. New approaches to their control and treatment are urgently needed and an attractive strategy is to remove the bacterial polysaccharide capsule, and thus the protection from the host's immune system. To examine phylogenetic relationships, distribution of capsule chemotypes, acquired antibiotic resistance determinants, susceptibility to complement and other traits associated with systemic infection, we sequenced 191 isolates from three tertiary referral hospitals in Thailand and used phenotypic assays to characterize key aspects of infectivity. Several distinct lineages were circulating in three hospitals and the majority belonged to global clonal group 2 (GC2). Very high levels of resistance to carbapenems and other front-line antibiotics were found, as were a number of widespread plasmid replicons. A high diversity of capsule genotypes was encountered, with only three of these (KL6, KL10, and KL47) showing more than 10% frequency. Almost 90% of GC2 isolates belonged to the most common capsule genotypes and were fully resistant to the bactericidal action of human serum complement, most likely protected by their polysaccharide capsule, which represents a key determinant of virulence for systemic infection. Our study further highlights the importance to develop therapeutic strategies to remove the polysaccharide capsule from extensively drug-resistant A. baumanii during the course of systemic infection.
Pathogen resistance to conventional antibiotics has become a serious clinical and public health problem, making the development of an alternative mean a very urgent issue. Recently, biosynthesis of silver nanoparticles (AgNPs) was successfully accomplished in the presence of Eucalyptus citriodora leaf extract as a reducing agent. In this study, the antimicrobial mechanisms of AgNPs against important hospital‐acquired pathogens, including Gram‐positive, Gram‐negative bacteria, and fungi were further assessed. The results indicated that AgNPs could enhance a broad antimicrobial spectrum against drug‐resistant organisms, with a range of minimum inhibitory concentration from 0.02 to 0.36 μg/mL. Time‐kill assay showed that AgNPs produced bactericidal effects on the microorganisms. AgNPs could significantly reduce biofilm production in pathogens without affecting growth of the pathogens (p < 0.05). AgNPs inhibited cell viability and biofilm formation in a dose‐dependent manner. Cell membrane damage in microorganisms resulting from effects of AgNPs was observed. A significant increase in per cent uptake of crystal violet was observed in all isolates treated with AgNPs when compared with the control (p < 0.05). Upon treatment with AgNPs, the surface charge of the reference strains and clinical isolates of pathogens moved towards neutral. The alteration of surface potential after exposure to AgNPs could contribute to membrane disruption and cell viability. Scanning electron microscopy further confirmed morphological cell changes and disrupted the cell membrane. Increasing resistance to AgNPs was not induced by stepwise isolation of the bacteria after 45 passages on Luria‐Bertani agar supplemented with AgNPs. Furthermore, AgNPs was not toxic to red blood cells.
Nineteen bacteriophages against five main capsular types of multidrug-resistant Acinetobacter baumannii were isolated from tertiary care hospital sewage. Eight representative phages from each capsular type were characterized and tested for their biological properties. The biological features revealed that phages T1245, T444, and T515 had a large burst size of more than 420 pfu/mL, together with a short latent period lasting less than 6 min, and were readily adsorbed to a bacterial host within 10 min. Moreover, these phages demonstrated host specificity and stability over a broad range of temperatures (−20 to 60 °C) and pH (5.0–9.0). A whole-genome analysis of six lytic and two temperate phages revealed high genomic similarity with double-stranded DNA between 40 and 50 kb and G + C content of 38–39%. The protein compositions disclosed the absence of toxin-coding genes. The phylogenic results, together with morphological micrographs, confirmed that three selected phages (T1245, T444, and T515) belong to the Podoviridae family within the order Caudovirales. The biological data and bioinformatics analysis indicated that these novel A. baumannii phages possess important enzymes, including depolymerase and endolysin, which could be further developed as promising alternative antibacterial agents to control A. baumannii infections.
Supplementary Table S1. Minimum inhibitory concentrations (MICs) and fractional inhibitory concentrations (FICs) of ceftazidime and phage T1245 alone and in combinations against Acinetobacter baumannii isolates as determined by broth microdilution technique. S2. Minimum inhibitory concentrations (MICs) and fractional inhibitory concentrations (FICs) of cefotaxime and phage T1245 alone and in combinations against Acinetobacter baumannii isolates as determined by broth microdilution technique. Supplementary Table
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.