The development and implementation of CPOE for chemotherapy at a multisite safety-net health system created opportunities to optimize patient care and reduce variations through interprofessional collaborations. Initial evaluation suggested that CPOE reduced the medication-order error rate and improved user satisfaction in 1 of 3 facilities.
Epithelial ovarian cancer is the leading cause of death from gynecologic tumors in western countries. Newly diagnosed epithelial ovarian cancer patients usually have good initial response to combination of platinum-based and taxane-based chemotherapy. However, most patients eventually experience relapses, and responses to subsequent therapies are generally short-lived. Intraperitoneal chemotherapy has been shown to improve survival outcomes, but toxicities and logistics limit its acceptance. Dose-dense schedule of paclitaxel combined with carboplatin remains controversial, and more studies are needed to validate this approach. About 15% of epithelial ovarian cancer patients carry gene mutations in BRCA1 and/or BRCA2. The development of poly(adenosine diphosphate-ribose) polymerase inhibitors represents a novel therapeutic strategy, in which poly(adenosine diphosphate-ribose) inhibition leads to the formation of double-stranded DNA breaks that cannot be accurately repaired in BRCA1- or BRCA2-mutated tumors, thus leading to tumor cell death. This principle of synthetic lethality can be demonstrated by olaparib, an oral agent that inhibits the repair of single strand DNA breaks during DNA replication, causing defective homologous recombination and hence tumor cell death. Currently, many poly(adenosine diphosphate-ribose) inhibitors are in different phases of development. Furthermore, mechanisms of defective homologous recombination pathway may include other genetic and epigenetic abnormalities in addition to either germline or somatic BRCA1 and/or BRCA2 mutations, making these pathways as potential therapeutic targets. The clinical pharmacology, clinical efficacy, safety, administration issues of olaparib and current clinical development of poly(adenosine diphosphate-ribose) inhibitors are described in this article, along with an overview on the treatment options (including intraperitoneal chemotherapy and dose-dense chemotherapy) for epithelial ovarian cancer. On the other hand, overexpression of the vascular endothelial growth factor and increased angiogenesis are associated with the development and progression of epithelial ovarian cancer. Although there are some expected toxicities associated with antiangiogenesis, combination of bevacizumab and systemic chemotherapy improves the progression-free survival and response rate compared to chemotherapy alone. The clinical efficacy of adding bevacizumab and its safety for advanced epithelial ovarian cancer is also reviewed, with emerging data on antiangiogenesis therapy.
Chronic lymphocytic leukemia (CLL) is a neoplasm resulting from the progressive accumulation of functionally incompetent monoclonal B lymphocytes in the blood, bone marrow, lymph nodes, and spleen. It is the most common leukemia in Western countries and typically occurs in elderly patients. Initial treatment of CLL often includes a first-generation anti-CD20 antibody (rituximab) with chemotherapy and is the current standard of treatment for "younger" old adults (< 70 yrs of age) or older, clinically fit patients. However, because disease progression and drug resistance are inevitable, patients typically die from their disease or treatment-related complications. Improved understanding of the B-cell receptor signaling pathway, which is essential for normal B-cell growth and tumorigenesis, has led to the development of targeted therapies, with improved short-term clinical outcomes. Ibrutinib, obinutuzumab, and idelalisib, three novel agents recently approved by the U.S. Food and Administration for CLL, all have the potential to change the treatment paradigm. In this article, we describe the pathogenesis of CLL and some of its prognostic factors. Emphasis is on the pharmacology, dosing, clinical efficacy, safety, and place of therapy of ibrutinib, obinutuzumab, and idelalisib. Investigational agents that target different parts of the CLL pathogenic pathway are also described.
Neoadjuvant or preoperative chemotherapy is the preferred treatment for locally advanced, inflammatory and early-stage high-risk breast cancers. Patients with locally advanced breast cancers are candidates for neoadjuvant therapy because their tumours are often not amenable to resection. On the other hand, patients are candidates for neoadjuvant chemotherapy if the breast-conserving surgery is not possible. At present, anthracycline-and taxane-based chemotherapy regimens remain as the cornerstone for neoadjuvant therapy in early breast cancer, but there is a clear need for effective therapies in high-risk, early-stage patients. A number of chemotherapeutic and targeted therapies have been evaluated in clinical trials with varying results. The US Food and Drug Administration (FDA) has recently approved pertuzumab in combination with trastuzumab and cytotoxic chemotherapy as a neoadjuvant therapy option for HER2-positive breast cancer. This article reviews the neoadjuvant chemotherapeutic and targeted therapies options for early-stage, high-risk breast cancer. Possible role of molecular subtyping in triple-negative breast cancer is also described. KeywordsNeoadjuvant, triple-negative, locally advanced, inflammatory, breast cancer, HER2, molecular subtyping Neoadjuvant therapy (also referred to as preoperative, pre-surgical, induction or primary systemic therapy) is the systemic treatment of breast cancer in the preoperative setting with curative intent. It was first evaluated more than 30 years ago for the treatment of locally advanced, inflammatory (a subtype of locally advanced breast cancer) and inoperable breast cancers.3 It is now increasingly used in patients with operable disease.3 The primary objective of the neoadjuvant therapy is to improve surgical outcomes 3-5 in patients for whom a primary surgical approach is technically not feasible and in patients with operable breast cancer who desire breast conservation. Second, neoadjuvant therapy decreases the need for complete axillary lymph node dissection.6-8 It also allows an early evaluation of the systemic therapy. Third, neoadjuvant therapy gives clinicians an opportunity to obtain tumour specimens prior to and during the preoperative treatment, thus enabling researchers to investigate emerging drug therapies and predictive biomarkers. 7,8 Recently, following the announcement by the US Food and Drug Administration (FDA) 9 that it will consider neoadjuvant randomised trials for accelerated drug approval in early breast cancer, there has been a marked increase in clinical trials with novel agents in the neoadjuvant setting. This review focuses on the current and emerging neoadjuvant chemotherapies and targeted therapies for early-stage, high-risk 9 (defined as 20-25 % risk of recurrence or death at 5 years) breast cancer. Patient SelectionNeoadjuvant chemotherapy is the preferred treatment for locally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.