Despite its widespread use, sperm cryopreservation induces serious detrimental alterations in sperm function; indeed, it is commonly associated with decreased sperm viability and motility, and DNA fragmentation. Mechanisms of human sperm cryodamage are thought to be multifactorial, but oxidative stress seems to have a prominent role. A huge amount of data supported the cryoprotective effect of different antioxidants able to minimize the detrimental effects of reactive oxygen species (ROS) and improve the quality of spermatozoa. Among others, myo-inositol is one of the most powerful and has been reported to be effective in improving sperm quality and motility when used both in vivo and in vitro. This study aimed to determine the in vitro impact of myo-inositol in ameliorating sperm oxidative status during sperm cryopreservation. In particular, we demonstrated a significant improvement of sperm parameters (vitality and motility) when myo-inositol was added after sperm thawing (p < 0.05). Moreover, we showed that myo-inositol induces a significant increase in oxygen consumption, the main index of oxidative phosphorylation efficiency and ATP production. Finally, by means of 2D-electrophoresis, we demonstrated a significant decrease in the level of carbonyl groups, the main structural changes occurring in conditions of oxidative stress (p < 0.05). In conclusion, the sperm cryopreservation procedure we developed, assuring the reduction of ROS-induced sperm modifications, may improve the in vitro procedure currently used in ART laboratory for sperm cryostorage.
Semen samples are known to contain abnormal amounts of reactive oxygen species (ROS) and oxygen free radicals; therefore, the identification of antioxidant molecules able to counteract the oxidative damage caused by ROS is foresight. Indeed, improving semen quality in terms of motility and reduction in DNA damage, can significantly improve the fertilization potential of sperm in vitro. To this regard, myo-inositol, based on its antioxidant properties, has been reported to be effective in improving sperm quality and motility in oligoasthenozoospermic patients undergoing assisted reproduction techniques when used as a dietary supplementation. Moreover, in vitro treatment demonstrated a direct relationship between myo-inositol, mitochondrial membrane potential and sperm motility. This experimental study aimed to evaluate the effects of myo-inositol (Andrositol-lab) in vitro treatment on sperm motility, capacitation, mitochondrial oxidative phosphorylation and DNA damage. Our results demonstrate that myo-inositol induces a significant increase in sperm motility and in oxygen consumption, the main index of oxidative phosphorylation efficiency and ATP production, both in basal and in in vitro capacitated samples. Moreover, we provide evidence for a significant protective role of myo-inositol against oxidative damage to DNA, thus supporting the in vitro use of myo-inositol in assisted reproductive techniques. Even if further studies are needed to clarify the mechanisms underlying the antioxidant properties of myo-inositol, the present findings significantly extend our knowledge on human male fertility and pave the way to the definition of evidence-based guidelines, aiming to improve the in vitro procedure currently used in ART laboratory for sperm selection.
Specialized pro-resolving lipid mediators regulate the resolution of acute inflammation. They are formed by enzymatic oxygenation of polyunsaturated fatty acids and are divided into families including lipoxins, resolvins, protectins, and maresins. Resolvin D1 (RvD1), produced by docosahexaenoic acid, exerts anti-inflammatory and pro-resolving activities. This research aimed to investigate the implication of seminal RvD1 in human infertility. Infertile patients (n° 67) were grouped based on pathological reproductive conditions as idiopathic infertility, varicocele, and leukocytospermia; the fourth group was composed of fertile men (n° 18). Sperm characteristics were evaluated by light microscopy (WHO guidelines) and by transmission electron microscopy (TEM). The seminal levels of RvD1 and F2-isoprostane (F2-IsoPs) were dosed. In twenty men (6 fertile men, 8 with varicocele, 6 with leukocytospermia) seminal phospholipase A2, iron, cholesterol, transferrin, estradiol, ferritin, testosterone, and sperm membrane fatty acids were detected. The results indicated that: (i) RvD1 amount was positively correlated with F2-IsoPs and reduced sperm quality; (ii) RvD1 levels were significantly higher in patients with leukocytospermia, varicocele, and idiopathic infertility compared to fertile men; (iii) RvD1 increased along with other markers of oxidative stress and inflammation as fatty acids content and clinical biomarkers. This study suggests a panel of inflammatory markers and lipid mediators for a diagnosis of inflammatory status and a subsequent appropriate therapeutic approach.
Despite the major target of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, being the respiratory system, clinical evidence suggests that the male reproductive system may represent another viral target organ. Revealing the effect of SARS-CoV-2 infection on testis and sperm is a priority for reproductive biology, as well as for reproductive medicine. Here, we confirmed that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on human testis and ejaculated sperm; moreover, we provide evidence for the expression of the co-receptors transmembrane protease/serine (TMPRSS2), Basigin (BSG), and Catepsin L (CTSL). Human sperm were readily infected, both in vivo and in vitro, by SARS-CoV-2, as demonstrated by confocal and electron microscopy. The demonstration that the seminiferous epithelium and sperm support SARS-CoV-2 viral replication suggests the possibility that the spermatogenetic process may be detrimentally affected by the virus, and at the same time, supports the need to implement safety measures and guidelines to ensure specific care in reproductive medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.