In space, semiconductor devices are vulnerable to various effect of high energy radiation, causing single event upsets (SEUs), damaging or altering the lattice structure of the semiconductor device. The effect of ionizing radiation on metal oxide semiconductor device had been receiving very little attention as most research focus on polycrystalline silicon-based semiconductor. Based on our previous research studies specifically on gamma ra-diation
In space, geostationary electronics located within the outer van Allen radiation belt are vulnerable to gamma radiation exposure. In terms of application, implementing an electronic system in a high radiation environment is impossible via conventional engineering materials such as metal alloys as they are prone to radiation damage. Exposure to such radiation causes degradation and structural defects within the semiconductor component, significantly changing their overall density. The changes in the density will then cause electronic failure, known as the single event phenomena. Thus, the radiation response of material must be thoroughly investigated before the material is applied in a harsh radiation environment, specifically for flexible space borne electronic application. In this work, potential candidates for space-borne application devices: zinc oxide (ZnO) and Mg-doped ZnO thin film with a film thickness of 300 nm, were deposited onto an indium tin oxide (ITO) substrate via radio frequency (RF) sputtering method. The fabricated films were then irradiated by Co-60 gamma ray at a dose rate of 2 kGy/hr. The total ionizing dose (TID) effect of ZnO and Mg-doped ZnO thin films were then studied. From the results obtained, degradation towards the surface morphology, optical properties, and lattice parameters caused by increasing TID, ranging from 10 kGy–300 kGy, were evaluated. The alteration can be observed on the morphological changes due to the change in the roughness root mean square (RMS) with TID, while structural changes show increased strain and decreased crystallite size. For the optical properties, band gap tends to decrease with increased dose in response to colour centre (Farbe centre) effects resulting in a decrease in transmittance spectra of the fabricated films.
Solar assisted heat pump (SAHP) system integrates a solar thermal energy source with a heat pump. This technique is a very fundamental concept, especially for drying applications. By combining a solar thermal energy source such as solar thermal collectors and a heat pump dryer will assist in reducing the operation cost of drying and producing products with high quality. Many review papers in the literature evaluated the R&D aspects of solar-assisted heat pump dryers (SAHPD). This critical review paper studies some of the researches conducted in this field to understand and provides an update on recent developments in SAHPD. Also, a detailed explanation of principles and operation for SAHPD and its applications are presented. The used types of solar thermal collectors, as well as various heat pump dryers, are all discussed in this article. Finally, it is concluded that there is a clear lack of research in the techno-economic and environmental evaluation, while most of SAHPD studies focused on the performance study of the system. Keywords heat pump, collector, two phases, refrigerant, compression index. Nomenclature Volumetric efficiency Mass flow rate Mass refrigerant flow Ts Wetted surface temperature P Pressure Uwi Combined coefficient of heat transfer for tube wall, refrigerant and water film V Velocity k Compression index absolute humidity ratio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.