There is a growing interest in assessing dietary intake more accurately across different population groups, and biomarkers have emerged as a complementary tool to replace traditional dietary assessment methods. The purpose of this study was to conduct a systematic review of the literature available and evaluate the applicability and validity of biomarkers of legume intake reported across various observational and intervention studies. A systematic search in PubMed, Scopus, and ISI Web of Knowledge identified 44 studies which met the inclusion criteria for the review. Results from observational studies focused on soy or soy-based foods and demonstrated positive correlations between soy intake and urinary, plasma or serum isoflavonoid levels in different population groups. Similarly, intervention studies demonstrated increased genistein and daidzein levels in urine and plasma following soy intake. Both genistein and daidzein exhibited dose-response relationships. Other isoflavonoid levels such as O-desmethylangolensin (O-DMA) and equol were also reported to increase following soy consumption. Using a developed scoring system, genistein and daidzein can be considered as promising candidate markers for soy consumption. Furthermore, genistein and daidzein also served as good estimates of soy intake as evidenced from long-term exposure studies marking their status as validated biomarkers. On the contrary, only few studies indicated proposed biomarkers for pulses intake, with pipecolic acid and S-methylcysteine reported as markers reflecting dry bean consumption, unsaturated aliphatic, hydroxyl-dicarboxylic acid related to green beans intake and trigonelline reported as marker of peas consumption. However, data regarding criteria such as specificity, dose-response and time-response relationship, reliability, and feasibility to evaluate the validity of these markers is lacking. In conclusion, despite many studies suggesting proposed biomarkers for soy, there is a lack of information on markers of other different subtypes of legumes. Further discovery and validation studies are needed in order to identify reliable biomarkers of legume intake.Electronic supplementary materialThe online version of this article (10.1186/s12263-018-0614-6) contains supplementary material, which is available to authorized users.
A significant body of evidence demonstrates that isoflavone metabolites are good markers of soy intake, while research is lacking on specific markers of other leguminous sources such as peas. In this context, the objective of our current study was to identify biomarkers of pea intake using an untargeted metabolomics approach. A randomized cross-over acute intervention study was conducted on eleven participants who consumed peas and couscous (control food) in random order. The urine samples were collected in fasting state and postprandially at regular intervals and were further analysed by ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF-MS). Multivariate statistical analysis resulted in robust Partial least squares Discriminant Analysis (PLS-DA) models obtained for comparison of fasting against the postprandial time points (0 h vs. 4 h, (R2X = 0.41, Q2 = 0.4); 0 h vs. 6 h, ((R2X = 0.517, Q2 = 0.495)). Variables with variable importance of projection (VIP) scores ≥1.5 obtained from the PLS-DA plot were considered discriminant between the two time points. Repeated measures analysis of variance (ANOVA) was performed to identify features with a significant time effect. Assessment of the time course profile revealed that ten features displayed a differential time course following peas consumption compared to the control food. The interesting features were tentatively identified using accurate mass data and confirmed by tandem mass spectrometry (MS using commercial spectral databases and authentic standards. 2-Isopropylmalic acid, asparaginyl valine and N-carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid were identified as markers reflecting pea intake. The three markers also increased in a dose-dependent manner in a randomized intervention study and were further confirmed in an independent intervention study. Overall, key validation criteria were met for the successfully identified pea biomarkers. Future work will examine their use in nutritional epidemiology studies.
Obesity is a chronic disease characterised by excess adiposity, which impairs health. The high prevalence of obesity raises the risk of long-term medical complications including type 2 diabetes and chronic kidney disease. Several studies have focused on patients with obesity, type 2 diabetes and chronic kidney disease due to the increased prevalence of diabetic kidney disease. Several randomized controlled trials on sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 analogues, and bariatric surgery in diabetic kidney disease showed renoprotective effects. However, further research is critical to address the treatment of patients with obesity and chronic kidney disease to lessen morbidity. Key message Obesity is a driver of chronic kidney disease, and type 2 diabetes, along with obesity, accelerates chronic kidney disease. Several randomized controlled trials on sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 analogues, and bariatric surgery in diabetic kidney disease demonstrate the improvement of renal outcomes. There is a need to address the treatment of patients with obesity and CKD to lessen morbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.