In this paper, the efficiency of solar photovoltaic (SPV) module has been examined through combined effect of air-and water-cooling arrangements in warm and humid climatic condition. SPV framework requires neither fuel nor creates any toxin coming about into its expanded significance in the present energy area. The electrical yield from a SPV is an element of its effectiveness and some other controlling boundaries which influence the equivalent. One of the significant boundaries controlling the effectiveness of the board is the temperature as it continues expanding while at the same time utilizing the board in the sun. Around 31% of the SPV-based radiation on the board is changed over into the valuable energy, and the rest part is put away in its rear causing the ascent of temperature and antagonistically influencing its yield. The put away warm energy is of no utilization and diminishes the solidness of the in-assembled segments of the board because of the effect of extreme warm weights on them coming about into decrease in its life expectancy and transformation capacity. The least difficult approach to improve the proficiency of the board is to join the different cooling game plans, for example, air cooling, water cooling and consolidated air and water cooling and surveying their viability with no cooling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.