Determination of the NMR anisotropic magnetic shielding parameters from magic angle spinning, MAS, powder samples containing half-integer spin quadrupolar nuclei is achieved by analysis of the difference spectrum obtained with and without application of a hyperbolic secant pulse. Application of a hyperbolic secant pulse to any spinning sideband associated with the central transition, m(I) = 1/2 to m(I) = - 1/2, results in 'saturation' of the entire central transition manifold. Similarly, if one spinning sideband associated with the m(I) = 3/2 to m(I) = 1/2 and m(I) = - 1/2 to m(I) = - 3/2 satellite transitions is perturbed, the entire satellite manifold associated with these transitions is 'saturated' while the central transition is enhanced by population transfer. Three 'difference spectrum' techniques are employed to selectively yield the spinning sidebands associated predominantly from the central transition. The success of these difference techniques is first demonstrated by examining (51)V NMR spectra of three metavanadate salts and (59)Co NMR spectra of Co(acac)(3). The vanadium and cobalt chemical shift tensors in these compounds have spans between 400 and 1400 ppm. Because the hyperbolic secant techniques proposed here yielded results that are in good agreement with earlier reports, they have been applied to characterize the (51)V chemical shift tensor of the dimer of bis(N, N-dimethylhydroxamido)-hydroxooxovanadate, {V(O)(ONMe(2))(2)}(2)O, whose chemical shift tensor has not been previously reported.
In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1 H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.