Parkinson’s Disease is the second most common neurodegenerative disorder, affecting 1–2% of the elderly population. Its diagnosis is still based on the identification of motor symptoms when a considerable number of dopaminergic neurons are already lost. The development of translatable biomarkers for accurate diagnosis at the earliest stages of PD is of extreme interest. Several microRNAs have been associated with PD pathophysiology. Consequently, microRNAs are emerging as potential biomarkers, especially due to their presence in Cerebrospinal Fluid and peripheral circulation. This study employed small RNA sequencing, protein binding ligand assays and machine learning in a cross-sectional cohort comprising 40 early stage PD patients and 40 well-matched controls. We identified a panel comprising 5 microRNAs (Let-7f-5p, miR-27a-3p, miR-125a-5p, miR-151a-3p and miR-423-5p), with 90% sensitivity, 80% specificity and 82% area under the curve (AUC) for the differentiation of the cohorts. Moreover, we combined miRNA profiles with hallmark-proteins of PD and identified a panel (miR-10b-5p, miR-22-3p, miR-151a-3p and α-synuclein) reaching 97% sensitivity, 90% specificity and 96% AUC. We performed a gene ontology analysis for the genes targeted by the microRNAs present in each panel and showed the likely association of the models with pathways involved in PD pathogenesis.
Parkinson’s disease is associated with the aberrant
aggregation
of α-synuclein. Although the causes of this process are still
unclear, post-translational modifications of α-synuclein are
likely to play a modulatory role. Since α-synuclein is constitutively
N-terminally acetylated, we investigated how this post-translational
modification alters the aggregation behavior of this protein. By applying
a three-pronged aggregation kinetics approach, we observed that N-terminal
acetylation results in a reduced rate of lipid-induced aggregation
and slows down both elongation and fibril-catalyzed aggregate proliferation.
An analysis of the amyloid fibrils produced by the aggregation process
revealed different morphologies for the acetylated and non-acetylated
forms in both lipid-induced aggregation and seed-induced aggregation
assays. In addition, we found that fibrils formed by acetylated α-synuclein
exhibit a lower β-sheet content. These findings indicate that
N-terminal acetylation of α-synuclein alters its lipid-dependent
aggregation behavior, reduces its rate of in vitro aggregation, and
affects the structural properties of its fibrillar aggregates.
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.