Sweet's syndrome, or acute febrile neutrophilic dermatosis, is an uncommon severe cutaneous condition, not previously associated with allopurinol therapy. We describe the case of an 87-year-old woman with hyperuricemia who developed classic Sweet's syndrome manifestations 8 days after being treated with allopurinol. Patient's symptoms included fever, painful edema in the hands and lower limbs with non-pruritic erythematous plaques topped by pus-filled skin blisters, right eye conjunctivitis, splenomegaly and joint pain. At the emergency department, blood tests showed neutrophilic leukocytosis, inflammatory state and altered liver function. During hospitalization, she received unsuccessful treatments with two different antibiotics (namely ceftriaxone and levofloxacin), while treatment with intravenous methylprednisolone produced a rapid clinical remission of symptoms, cutaneous lesion pain improvement, normalization of her body temperature and her blood values returned to normal. Use of the Naranjo adverse drug reaction probability scale indicated a probable relationship between the patient's development of Sweet's syndrome and allopurinol therapy. Because the signs and symptoms of Sweet's syndrome resemble an infectious process, the correct diagnosis may be delayed and inappropriate treatment regimen with antibiotics may often precede glucocorticoid therapy.
Airway damage secondary to eosinophil activation is thought to contribute to the development of asthma. Using the fluorescent dye FURA-2 to measure the concentration of cytosolic calcium, we found that supernatants from anti-IgE-stimulated human lung mast cells increased cytosolic calcium in human eosinophils. We then examined the major mast cell mediators (histamine, PGD2, platelet-activating factor (PAF), eosinophil chemotactic factor of anaphylaxis (ECF-A), leukotriene (LT)C4 and LTB4) for their ability to increase cytosolic calcium in eosinophils. We found that both PAF (5 x 10(-9) to 5 x 10(-6) M) and PGD2 (two of five donors responsive at 1 x 10(-9) M) were potent stimuli for calcium mobilization. LTB4 (10(-8), 10(-7) M) and histamine were also active, although higher concentrations of histamine were required to see a response (3 x 10(-7) to 10(-5) M). LTC4, val-ECF-A, and ala-ECF-A were inactive. The effects of PGD2 and histamine were specific for eosinophils, although LTB4 and PAF increased calcium in both neutrophils and eosinophils. The histamine-induced increase in intracellular calcium was not blocked by the H1 or H2 antagonists pyrilamine or cimetidine (10(-4) M), respectively; however, the response to 10(-6) M histamine was completely blocked by the specific H3 antagonist thioperamide (10(-6) M). To evaluate the relative contribution of these stimulatory mast cell mediators on the calcium mobilizing activity in supernatants from anti-IgE-stimulated human lung mast cell (HLMC), we examined the effect of supernatants from HLMC pretreated with indomethacin and/or the 5-lipoxygenase pathway inhibitor MK886. These supernatants were added to FURA-2-loaded eosinophils that had been preincubated with thioperamide and/or the PAF antagonist WEB-2086. We found that the increase in eosinophil calcium in response to supernatants from anti-IgE-stimulated-HLMC was totally inhibited only when the mast cells were challenged in the presence of indomethacin and MK886, and the eosinophils were preincubated with thioperamide. WEB-2086 had little effect. When we examined the effect of these mediators on eosinophil secretory function, we found that PGD2 (not histamine) primed eosinophils for enhanced release of LTC4 in response to the calcium ionophore A23187. We conclude that the activation of eosinophils by PGD2 and other mast cell products may contribute to airways inflammation that is characteristic of asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.